摘要
分析了基于摄动的模糊聚类方法(fuzzy clustering method based on perturbation,FCMBP),指出指数复杂度的遍历过程是目前PC计算环境下难以处理十阶以上较高阶数模糊相似矩阵的原因.把寻求具有最小"失真"的最优模糊等价矩阵看作优化问题来求解,提出了一种基于进化规划的FCMBP模糊聚类改进方法.与FCMBP相比,该方法通过引入基于进化规划的优化技术避免了遍历过程,使其能够对高阶模糊相似矩阵进行处理.得到的等价矩阵"失真"小于传递闭包法所得结果,从而获得更为精确可靠的聚类效果,将FCMBP模糊聚类方法推广到能够处理高阶模糊相似矩阵的情形,满足应用需要.
In current PC computational environment, the fuzzy clustering method based on perturbation (FCMBP) is failed when dealing with similarity matrices whose orders are higher than ten. The reason is that the traversal process in FCMBP is exponential complexity. This paper treated the process of finding fuzzy equivalent matrices with smallest error from an optimization point of view and proposed an improved FCMBP fuzzy clustering method based on evolutionary programming. Compared with FCMBP, the improved method can deal with high order matrices by introducing an evolutionary programming based optimization technique instead of the traversal process. A much more accurate solution could be obtained than that obtained by the transitive method. The improved method extends FCMBP to fit high order matrices, which meets the need of using FCMBP in real application problems.
出处
《系统工程理论与实践》
EI
CSSCI
CSCD
北大核心
2011年第7期1363-1371,共9页
Systems Engineering-Theory & Practice
基金
国家自然科学基金(60933004
60975039
61035003)
国家重点基础研究发展计划(973计划)(2007CB311004)
国家科技支撑计划(2006BAC08B06)
关键词
模糊聚类
FCMBP模糊聚类
最优模糊等价矩阵
进化规划
fuzzy clustering
FCMBP fuzzy clustering
optimal fuzzy equivalent matrix
evolutionary programming