期刊文献+

基于相关性-兴趣度架构的关联规则挖掘的查询扩展

Query Expansion Based on Association Rules Mining Using Correlation-Interest Measure Framework
原文传递
导出
摘要 针对情报检索系统中存在的词不匹配问题,提出一种基于相关性-兴趣度架构的关联规则挖掘的局部反馈查询扩展算法,并论述查询扩展基本思想、扩展算法模型以及扩展词权值的计算方法。该算法主要特点是采用支持度-置信度-相关性-兴趣度框架衡量关联规则,避免产生负相关的、虚假的和无兴趣的规则,提高来自于关联规则的扩展词的质量。实验结果表明,该算法能有效地改善和提高信息检索性能,有很高的实际应用价值和推广前景。 Aiming at the term mismatch issues of existing information retrieval system, a novel query expansion algorithm of local feedback is proposed based on association rules mining under ton'elation -interest measure framework. Its basic conception and algo- rithm as well as model are expounded, and a new computing method for weights of expansion terms is also expatiated. The framework of support-confidence-relevance-interest measure is used to judge association rules in the algorithm and negative-related and false as well as no interest association rules are avoided, to improve the quality of the expansion terms from the association rules. The results of the experiment show that the proposed algorithm is effective and improves the performance of irfformation retrieval with superior applied value of practice as well as popularizing prospect.
作者 黄名选
出处 《图书情报工作》 CSSCI 北大核心 2011年第15期110-113,共4页 Library and Information Service
基金 广西教育厅科研项目"基于加权负关联规则挖掘的文本信息检索技术研究"(项目编号:201010LX679) 广西教育学院2010年度院级重点课题"基于正负关联规则的信息检索技术研究"(项目编号:桂教院科研[2010]7号(重点)-3)的阶段性研究成果之一
关键词 相关性 兴趣度 查询扩展 关联规则 情报检索 算法 cmTelation interest measure query expansion association rule information retrieval algorithm
  • 相关文献

参考文献6

二级参考文献55

  • 1钱晓东,王正欧.基于神经网络文本检索词的语义扩充[J].计算机工程,2004,30(20):22-24. 被引量:3
  • 2聂卉.基于本体的查询扩展与规范[J].现代图书情报技术,2007(3):35-38. 被引量:15
  • 3左万利 刘居正.包含正负属性的关联规则及其挖掘.第十六届全国数据库学术会议论文集[M].兰州,1999.288-292.
  • 4Almind,T.C,Ingwersen,P.1nformetric analyses on the world Wide Web:Methodological approaches to'webmetries'.Journal of Documentation.1997,53(4):404-426.
  • 5覃泽.基于信息增益的数据库缺失值填充算法[J].微计算机信息,2007,23(04X):180-181. 被引量:4
  • 6Fonseca B M, Golgher P B, de Moura E S, et al. Ziviani. Discovering search engine related query using association rules[J].Journal of Web Engineering, 2004,2 (4) : 215 - 227.
  • 7Chengqi Zhang, Zhenxing Qin, Xiaowei Yan. Association- Based Segmentation for Chinese - Crossed Query Expansion [ J ]. IEEE Intelligent Informatics Bulletin, 2005,5 ( 1 ) : 18 - 25.
  • 8Gery M, Haddad M H. Knowledge discovery for automatic query expansion on the World-Wide Web[C]. In: Proceedings of Advances in Conceptual Modeling: ER 99 Workshops, Lecture Notes in Computer Science 1727, Springer, Paris, France, November 15-18, 1999:34-347.
  • 9Wei J, Qin Z X, Bressan S, et al. Mining Term Association Rules for Automatic Global Query Expansion : A Case Study with Topic 202 from TREC4 [ C ]. In Proceedings of Americas Conference on Information Systems , 2000.
  • 10Wei J, Bressan S, Beng Chin Ooi. Mining Term Association Rules for Automatic Global Query Expansion: Methodology and Preliminary Results[C]. Proceedings of First International Conference on Web Information Systems Engineering, Hong Kong, China, 2000:366 - 373.

共引文献204

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部