期刊文献+

基于颜色分割和多特征融合的交通标志检测 被引量:7

Traffic Sign Detection Based on Color Segmentation and Multi-features Fusion
下载PDF
导出
摘要 采用了一种鲁棒的交通标志检测算法,该算法结合了基于颜色分割的粗定位过程和基于多特征融合的交通标志精确定位过程.粗定位利用交通标志的颜色特征,采用基于YIQ空间的颜色分割方法,获得图像中有可能包含交通标志的图像子区域;基于多特征融合的精确定位是采用梯度方向直方图(histogram of oriented gradient,HOG)及局域二值模式(local binary pattern,LBP)两种互补的特征,并利用支持向量机(support vector machinc,SVM)进行分类,得到交通标志的准确位置.实验表明该方法对亮度变化、视点变换、尺度变化及目标部分遮挡等情况具有很强的鲁棒性,并且查准率和查全率总体都比基于单特征的方法好. Traffic sign detection is important in intelligent transport system.In this paper,an efficient novel approach is proposed to achieve automatic traffic sign detection.The detection method combines color segmentation with learning based multi-features of traffic sign guided search.The rough location stage could obtain possible region of traffic sign using color segmentation based on YIQ space.The exact location stage searches traffic sign in these traffic sign possible regions based on multi-features fusion,we use histogram of oriented gradient(HOG) and local binary pattern(LBP) to classify by support vector machine(SVM).Experimental results show that,the proposed approach can achieve robustness to illumination,scale,viewpoint change and even partial occlusion.The average detection rate and the false positive rate of our approach are better than the method based on one feature.
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第4期685-689,共5页 Journal of Xiamen University:Natural Science
基金 国防基础科研计划项目(B1420110155) 国家重点基础研究发展计划(973)项目(2007CB311005) 福建省教育厅A类项目(JA09230 JA09231)
关键词 交通标志检测 颜色分割 梯度方向直方图 局域二值模式 traffic sign detection color segmentation HOG LBP
  • 相关文献

参考文献9

  • 1Benallal M, Meunier J. Real-time color segmentation of road signs[C]//Proeeedings of the Canadian Conference on Electrical and Computer Engineering. Montreal: IEEE, 2003 : 1823-1826.
  • 2黄志勇,孙光民,李芳.基于RGB视觉模型的交通标志分割[J].微电子学与计算机,2004,21(10):147-148. 被引量:40
  • 3Garcia M A,Sotelo M A, Martin E. Fast road sign detec- tion using hough transform for assisted driving of road vehicles[C]//Computer Aided Systems Theory-EURO- CAST. Las Palmas de Gran Canaria: IEEE, 2005: 543-548.
  • 4Caraffi C, Cardarelli E, Medici P, et al. An algorithm for Italian de-restriction signs detection[C]//lnteUigent Ve- hicles Symposium. Eindhoven: IEEE, 2008 : 834-840.
  • 5Lowe D G. Distinctive image features from scale-invari- ant keypoints[J]. International Journal of Computer Vi-sion,2004,60:91-110.
  • 6Dalai N, Triggs B. Histograms of oriented gradients for human detection[C]//Computer Society Conference on Computer Vision and Pattern Recognition. San Diego: IEEE, 2005 :886-893.
  • 7Ojala T,Pietiktainen M, Harwood D. A comparative study of texture measures with classification based on feature distributions[J]. Pattern Recognition, 1996, 29 (1) : 51- 59.
  • 8Alefs B, Eschemann G, Ramoser H, et al. Road sign de- tection from edge orientation histograms[C]//Intelligent Vehicles Symposium. Istanbul: IEEE, 2007 : 993-998.
  • 9Xie Yuan, Liu Lifeng, Li Cuihua, et al. Unifying visual sa- liency with HOG feature learning for traffic sign detec- Xl an: IEEE, tion[C]//Intelligent Vehicles Symposium. 2009 : 24-29.

二级参考文献6

  • 1N Kehtarnavaz, N C Griswodd, D S Kang. Stop-sign recognition based on colour-shap processing. Machine Vision and Applications, 1993.6: 206-208.
  • 2L Priese, V Rehrmann. On Hierarchical color segmentation and applications. Proc, CVPR 1993, 633-634.
  • 3L Priese, V R Lakmann, R S chian. New results on traffic sign recognition. In IEEE Proc. Intelligent Vehicles'94Symposium, 1994:249-253.
  • 4D Krumbiegel, K-F Kraiss, S Schrieber. A connectionist traffic sign recognition system for onboard driver information. 5th IFAC/IFIP/IFORS/IEA Symposium on Anlaysis,Design and Evaluation of man-Machine Systems 1992,201-206.
  • 5杨修铭,刘昆灏,刘昭麟.干扰状况下之交通标志侦测及辨识.台湾省人工智能学会第七届人工智慧与应用研讨会论文集.2002:555-560.
  • 6力军.道路交通标志中的科学[J].拖拉机汽车驾驶员,1999(4):33-33. 被引量:1

共引文献39

同被引文献56

引证文献7

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部