期刊文献+

半无限平面裂纹构型横向应力的Green函数 被引量:2

Green's Function for T-Stress of a Semi-Infinite Plane Crack
下载PDF
导出
摘要 针对各向同性弹性无限大板中半无限裂纹,用解析函数方法求解了裂尖处横向应力的Green函数.加载情况为一任意集中力作用于任意一内点处.用叠加法求解了复势,它给出该平面问题的弹性解.通过渐近分析抽取复势的非奇异部分.基于该非奇异部分,用一种直接方法求解了横向应力的Green函数.进一步,用叠加法得到了一对对称和反对称集中力加载时的Green函数.然后,用得到的Green函数来预测铁电材料双悬臂梁试验中畴变引起的横向应力.用力电联合加载引起的横向应力来判断试验中所观察到的稳定和不稳定裂纹扩展行为.预测结果和试验数据基本吻合. Green's function for the T-stress near a crack tip was addressed by an analytic function method for a semi-infinite crack lying in an elastical,isotropic,and infinite plate.The cracked plate was loaded by single inclined concentrated force at interior point.The complex potentials were obtained by a superposition principle,which provide the solutions to the plane problems of elasticity.The regular parts of the potentials were extracted by an asymptotic analysis.Based on the regular parts,Green's function for the T-stress was obtained in a straightforward manner.Furthermore,Green's functions were derived for a pair of symmetrically and anti-symmetrically concentrated forces by the superimposing method.Then Green's function was used to predict the domain-switch-induced T-stress in a ferroelectric double cantilever beam(DCB) test.The T-stress induced by the electromechanical loading was used to judge the stable and unstable crack growth behaviors observed in the test.The prediction results roughly agree with the experimental data.
出处 《应用数学和力学》 CSCD 北大核心 2011年第8期912-919,共8页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(10702071 11090334) 中国博士后科学基金资助项目(201003281) 上海博士后科学基金资助项目(10R21415800) 上海市重点学科计划资助项目(B302) 中德科学中心项目"Crack Growth in Ferroelectrics Driven by Cyclic Electric Loading"资助
关键词 GREEN函数 横向应力 复变函数 半无限裂纹 断裂力学 Green's function T-stress complex variable function semi-infinite crack fracture mechanics
  • 相关文献

参考文献29

  • 1Williams M L. On the stress distribution at the base of a stationary crack[J]. Journal of Ap- plied Mechanics-Transactions of the ASME, 1957, 24 : 111-114.
  • 2Westergaard H M. Bearing pressures and cracks[ J]. Journal of Applied Mechanics--Trans- actions of the ASME, 1939, 6 : 49-53.
  • 3Sih G C. On the Westergaard method of crack analysis[ J]. International Journal of Fracture Mechanics, 1966, 2(4) : 628-631.
  • 4Larsson S G, Carlsson A J. Influence of non-singular stress terms and specimen geometry on small-scale yielding at crack tips in elastic-plastic materials [ J ]. Journal of the Mechanics and Physics of Solids, 1973, 21(4) : 253-277.
  • 5Rice J R. Limitations to the small scale yielding approximation for crack tip plasticity [ J ]. Journal of the Mechanics and Physics of Solids, 1974, 22( 1 ) : 17-26.
  • 6Cotterell B, Rice J R. Slightly curved or kinked cracks [ J ]. International Journal of Frac- ture, 1980, 16(2): 155-169.
  • 7Tvergaard V. Effect of T-stress on crack growth under mixed mode Ⅰ-Ⅲ loading[J]. International Journal of Solids and Structures, 2008, 45(18/19) : 5181-5188.
  • 8Li X F, Tang B Q, Peng X L, Huang Y. Influence of elastic T-stress on the growth direction of two parallel cracks[J]. Structural Engineering and Mechanics, 2010, 34(3) : 377-390.
  • 9Leevers P S, Radon J C. Inherent stress biaxiality in various fracture specimen geometries [J]. International Journal of Fracture, 1982, 19(4): 311-325.
  • 10Kfouri A P. Some evaluations of the elastic T-term using Eshelby's method[ J]. Internation- al Journal of Fracture, 1986, 31)(4) : 301-315.

二级参考文献15

  • 1Han Yang Dalian University of Technology,Dalian 116023,China SUN Shaoping Beijing Municipal Engineering Research Institute,Beijing 100037,China Senior Engineer.A disjoint algorithm for seismic reliability analysis of lifeline networks[J].Earthquake Engineering and Engineering Vibration,2002,1(2):207-212. 被引量:1
  • 2Jianshun Sheng,Chad M. Landis.Toughening due to domain switching in single crystal ferroelectric materials[J].International Journal of Fracture.2007(2)
  • 3M. Kamlah.Ferroelectric and ferroelastic piezoceramics – modeling of electromechanical hysteresis phenomena[J].Continuum Mechanics and Thermodynamics.2001(4)
  • 4Suo Z.Mechanics concepts for failure in ferroelectric ceramics[].Smart Structures and Materials Proceedings of the Symposiumth ASME Winter Annual Meeting.1991
  • 5Huber J,Fleck N.Ferroelectric switching: a micromechanics model versus measured behavior[].European Journal of Mechanics A Solids.2004
  • 6Lynch C S.Large field electro-mechanical measurement techniques for ferroelectric materials[].Integrated Ferroelectrics.2009
  • 7Shindo Y,Narita F,Hirama M.Effect of the electrical boundary con-dition at the crack face on the mode I energy release rate in piezo-electric ceramics[].Applied Physics Letters.2009
  • 8Kreher W S.Influence of domain switching zones on the fracture toughness of ferroelectrics[].Journal of the Mechanics and Physics of Solids.2002
  • 9Neumeister P,Kessler H,Balke H.Modeling ferroelastic domain switching at a stationary crack tip in a single crystal with account of transformation stresses due to domain reorientation[].Computation Materials Science.2008
  • 10Kalyanam S,Sun C T.Modeling the fracture behavior of piezoelec-tric materials using a gradual polarization switching model[].Mechanics of Materials.2009

共引文献3

同被引文献14

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部