期刊文献+

基于最近邻用户动态重排序的协同过滤方法 被引量:2

Dynamic Reordering Within the Nearest Neighbor-based Algorithm for Collaborative Filtering
下载PDF
导出
摘要 在传统协同推荐方法中,相似性的度量是整个方法的核心.在数据稀疏情况下,现有相似度计算方法仅使用历史评分数据,难以准确反映用户之间的相似程度;相关改进方法在考虑用户共同评分数量对相似度的影响时,引入的重叠度参数需要手动调整,限制了方法实用性.针对上述问题,本文提出一种基于最近邻用户重排序(DRNN)的相似度方法,充分利用项目类别信息,根据不同的目标项目动态调整邻居集内用户权重,能更准确地刻画用户之间的相似性;并提出修正的重叠度因子弥补现有方法中手动调整参数的不足,增强了方法实用性.实验结果表明,该方法可以明显提升预测结果的准确性. In the traditional Collaborative Filtering(CF),the most critical component is how to measure the similarity between users.In confront with the problem of data sparsity,traditional CF merely considers the ratings which were rated by both of two users to measure the similarity between them,without fully exploring more information.Meanwhile,some improvements of existing algorithms take into account of the number of co-rated items with introducing the overlap parameters,which need to be manually adjusted,result in the limitation of the algorithm practicality.To address those problems,this paper proposed a collaborative filtering algorithm based on Dynamic Reordering within the Nearest Neighbor set(DRNN).It dynamically adjusts the weight of users in neighbor set according to different target items.In addition,the factor of the modified overlap is introduced to optimize the selection of target user′s neighbors.Empirical studies on dataset MovieLens show that algorithm outperforms other state-of-the-art CF algorithms.
出处 《小型微型计算机系统》 CSCD 北大核心 2011年第8期1581-1586,共6页 Journal of Chinese Computer Systems
基金 国家"八六三"高技术研究发展计划项目(2008AA01Z117)资助 国家"八六三"高技术研究发展计划重大专项(2010ZX03004-003)资助 国家自然科学基金项目(60933013)资助 博士学科点专项科研基金项目(20070358040)资助
关键词 协同过滤 最近邻居集 全局相似度 局部相似度 重叠度 collaborative filtering nearest neighbors globe similarity local similarity overlap
  • 相关文献

参考文献2

二级参考文献19

  • 1Schafer J B, Konstan J A and Riedl J. Recommender systems in E-Commerce[C]. In: ACM Conference on Electronic Commerce(EC99), 1999, 158-166.
  • 2Breese J, Hecherman D and Kadie C. Empirical analysis of predictive algorithms for collaborative filtering[C]. In:Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence(UAI-98), 1998, 43-52.
  • 3Schafer J B, Konstan J A and Riedl J. E-Commerce recommendation applications [J]. Data Mining and Knowledge Discovery,2001, 5 (1-2): 115-153.
  • 4Goldberg D, Nichols D, Oki B M and Terry D. Using collaborative filtering to weave an information tapestry[J]. Communications of the ACM, 1992,35(12):61-70.
  • 5Resnick P, Iacovou N, Suchak M, Bergstrom P and Riedl J.Grouplens. an open architecture for collaborative filtering of netnews[C]. In: Proceedings of ACM CSCW' 94 Conference on Computer-Supported Cooperative Work, 1994,175-186.
  • 6Shardanand U and Maes P. Social information filtering: algorithms for automating ''Word of Mouth'' [C]. In Proceedings of ACM CHI' 95 Conference on Human Factors in Computing Systems, 1995, 210-217.
  • 7Hill W, Stead L, Rosenstein M and Furnas G. Recommending and evaluating choices in a virtual community of Use[C]. In:Proceedings of CHI' 95, 1995,194-201.
  • 8Sarwar B, Karypis G, Konstan J and Riedl J. Item-based collaborative filtering recommendation algorithms[C]. In:Proceedings of the Tenth International World Wide Web Conference, 2001,285-295.
  • 9Chickering D and Hecherman D. Efficient approximations for the marginal likelihood of bayesian networks with hidden variables[J]. Machine Learning, 1997, 29, 181-212.
  • 10Dempster A, Laird N and Rubin D. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society, 1977, 38(1): 1-38.

共引文献272

同被引文献27

  • 1BREESE J S, HECKERMAN D, KADIE C. Empirical analysis of predictive algorithms for collaborative filtering [ C ]//Proc. of the Fourteenth Conference on Uncertainty in Artificial Intelligence, North Carolina, USA: Morgan Kaufmann Publishers Inc. 1998:43 -52.
  • 2HERLOCKER J, KONSTAN J A, RIEDL J. An empirical analysis of design choices in neighborhood-based collaborative filtering al- gorithms [ J ]. Information Retrieval,2002,5 (4) :282 - 310.
  • 3MCLAUGHLIN M R, HERLOCKER J L. A collaborative filtering algorithm and evaluation metric that accurately model the user ex- perience[ C]//Pmc. of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retriev- al, Sheffield, UK : ACM Press, 2004 : 329 - 336.
  • 4BELL R, KOREN Y, VOLINSKY C. Modeling relationships at multiple scales to improve accuracy of large recommender systems [C]//Proc. of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, USA:ACM Press ,2007 : 95 - 104.
  • 5HUETE J F, FERNANDEZ-LUNA J M, CAMPOS L M, et al. U- sing past-prediction accuracy in recommender systems j ]. Infor- mation Sciences ,2012,199 : 78 - 92.
  • 6CANDILLIER L, MEYER F, FESSANT F. Designing specific weighted similarity measures to improve collaborative filtering sys- tems[ C]//Prec. of the Industrial Conference on Data Mining, Berlin, Germany:Springer Verlag, 2008, 50(77): 242-255.
  • 7RESNICK P, IACOVOU N, SUCHAK M, et al. GroupLens: an open architecture for collaborative filtering of net news [ C ]// Proc. of the 1994 ACM Conference on Computer Supported Coop- erative Work, New York, UAS : ACM Press, 1994 : 175 - 186.
  • 8Su Xiao-yuan, Taghi M K. A Survey of Collaborative Filtering Techniques[J]. Advances in Artificial Intelligence, 2009 ( 1 ) .. 1 19.
  • 9Fidel C, Victor C, Diego F, et al. Comparison of Collaborative Filtering Algorithms: Limitations of Current Techniques and Proposals for Scalable, High-Performance Recommender Sys- tems[J]. ACM Transactions on the Web,2011,5(1) :2-33.
  • 10Liu N N, Zhao Min, Xiang E, et al. Online evolutionary collabo- rative filtering[C]//Proceedings of the fourth ACM Conference on Recommender systems. New York,201095 102.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部