摘要
提出一种对含有噪音的生态环境声音进行分类的方法.首先,匹配追踪(Matching Pursuit,简称MP)算法可以提取有效信号的时-频特征,减弱噪音的干扰.支持向量机(support Vector Machine,简称SVM)分类器的鲁棒性比较好,所以提出使用SVM基于MP时-频特征建立模型(简称MP-SVM)对含有噪音的生态环境声音进行分类.实验得出MP-SVM可取得较好的分类效果,证明了MP时-频特征和SVM分类器具有较好的抗噪性.
A classification approach for eco-environmental sounds under noise conditions is presented in this paper.Matching pursuit(MP) algorithm is proposed to extract time-frequency features of effective signals,so that it can reduce the interference of noise.In addition,the classification model using support vector machine(SVM) is more robust,so a classification model using MP-based features and SVM(MP-SVM) is proposed.Experimentally,MP-SVM is able to achieve a higher accuracy rate for discriminating eco-environmental sounds under noise conditions.The result shows that MP-based features and SVM classifier have better noise immunity.
出处
《小型微型计算机系统》
CSCD
北大核心
2011年第8期1689-1693,共5页
Journal of Chinese Computer Systems
基金
国家自然科学基金项目(61075022)资助
福建省教育厅A类科技项目(JA09021)资助
关键词
生态环境声音
匹配追踪
时-频特征
MEL频率倒谱系数
支持向量机
eco-environmental sounds
matching pursuit
time-frequency features
Mel-frequency cepstral coefficients
support vector machine