期刊文献+

一种并行的自适应量子粒子群算法 被引量:7

Method of Parallel Adaptive Quantum Particle Swarm Optimization
下载PDF
导出
摘要 针对粒子群算法存在易陷入局部最优解的问题,提出了一种并行的自适应量子粒子群算法。通过共享粒子的两个极值,将改进后的自适应粒子群算法和边界变异的量子粒子群算法并行搜索,有效地克服了标准粒子群算法的缺陷。测试结果表明,该算法在精度和全局最优解的找寻速度方面有了很大的提高。 A new parallel adaptive quantum particle swarm opitimzation algorithm is proposed in this paper to solve the problem that standard particle swarm optimization(PSO) algorithm may easily trap into local optimal points and may obtain exact solutions at the late of the iteration with difficultly. By sharing the two extreme values of the particles, the proposed method is able to adaptively search their optimum solutions in parallel by combination of an improved adaptive PSO with a quantum Particle Swarm Optimization of boundary variation. It is proved effectively to overcome the shortcomings of standard PSO. Test results show that the accuracy and the velocity of global search for optimal solutions have been greatly improved.
出处 《计算机系统应用》 2011年第8期47-51,71,共6页 Computer Systems & Applications
基金 国家自然科学基金(60876022 50925727) 高技术与发展基金(2006AA04A104) 湖南省自然基金(07JJ6132) 中央高校基本科研业务费
关键词 自适应粒子群算法 量子粒子群算法 并行搜索 adptive PSO quantum PSO parallel search
  • 相关文献

参考文献12

  • 1Kennedy J, Eberhart R. Particle swarm optimization. Proc. of the IEEE International Conference on Neural Networks. 1995. 1942-1948.
  • 2Xiao RY, Yu JH. A Newly Self-Adaptive Strategy for the PSO. Natural Computation. 2008. ICNC 2008. Fourth International Conference on. 2008. 396-400.
  • 3Dorigo M, Maniezzo V, Colorni A. Ant System: Optimization by a colony of cooperaing agents. IEEE Trans. on SMC, 1996,26(1):29-4 1.
  • 4雷秀娟,史忠科,孙瑰琪.基于遗传算子的粒子群优化算法的比较分析[J].计算机工程与应用,2008,44(14):65-66. 被引量:10
  • 5高鹰,谢胜利.免疫粒子群优化算法[J].计算机工程与应用,2004,40(6):4-6. 被引量:160
  • 6陈根军,王磊,唐国庆.基于蚁群最优的输电网络扩展规划[J].电网技术,2001,25(6):21-24. 被引量:112
  • 7Thangaraj R, Pant M, Nagar AK. Maximization of Expected Target Damage Value Using Quantum Particle Swarm Optimization. Developments in eSystems Engineering (DESE), 2009 Second International Conference on. 2009. 329-334.
  • 8Shi YH, Eberhart RC. A modified particle swarm optimizer.Proc. of the IEEE Congress on Evolutionary Computation. Piscataway, USA: IEEE Service Center, 1998.69-73.
  • 9Sun J, Feng B, Xu WB. Particle swarm optimization with particles having quantum behavior. Proc. of 2004 Congress on Evolution Computation. Piscataway. N J: IEEE Press, 2004. 325-331.
  • 10刘昊,李大卫,王莉.遗传并行粒子群优化算法及其性能分析[J].辽宁科技大学学报,2008,31(3):239-239. 被引量:1

二级参考文献21

  • 1冯斌,须文波.基于粒子群算法的量子谐振子模型[J].计算机工程,2006,32(20):18-21. 被引量:11
  • 2高鹰.具有遗传特性的粒子群优化算法及在非线性盲分离中的应用[J].广州大学学报(自然科学版),2006,5(5):49-53. 被引量:6
  • 3Shi Y H,Eberhart R C. Parameter selection in particle swarm optimization [ C ]//Evolutionary Programming Ⅶ: Proc EF'98. New York : Springer-Verlag, 1998 : 591-600.
  • 4Eberhart R C, Shi Y H. Comparing inertia weights and constriction factors in particle swarm optimization [ C ]//Proceedings of the IEEE Congress on Evolutionary Computation,San Diego ,CA ,2000:84-88.
  • 5Shi Y H, Eberhart R C. Empirical study of particle swarm optimization [C]//Proceedings of the 1999 Congress on Evolutionary Computation, Washington D C. Piscataway, NJ : IEEE Service Center, 1999 : 1945-1950.
  • 6Clerc M. The swarm and the queen:towards a deterministic and adaptive particle swarm Optimization [ C]//Proceedings of the 1999 Congress on Evolutionary Computation, Piscataway, Washington D C. NJ: IEEE Service Center,1999:1951-1957.
  • 7Liang Y C,Proc 1999 Congress on Evolutionary Computation,1999年,1478页
  • 8Yu Inkeun,Proc POWERCON'98 1998 International Conference on Power System Technology,1998年,552页
  • 9Kennedy J, Eberhart R C. Particle swarm optimization[C] // Proceedings of IEEE International Conference on Neural Networks. Piscataway: IEEE, 1995:1942-1948.
  • 10Shi Y H, Eberhart R C. Empirical study of particle swarm optimization[C] // Proceedings of IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 1999: 1945-1950.

共引文献283

同被引文献73

引证文献7

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部