期刊文献+

海量光谱中激变变星候选体的数据挖掘

Data Mining of Cataclysmic Variables Candidates in Massive Spectra
下载PDF
导出
摘要 提出一套适用于海量光谱自动快速筛选激变变星的方法。利用已证认的激变变星光谱作为模板,使用主分量分析提取主特征后构造光谱特征矩阵,将海量光谱利用光谱特征矩阵映射到特征空间后,使用支持向量机排除大部分非候选体,最后对较少数量的候选体进行模板匹配并证认,结果作为反馈进一步丰富模板库。实验发现了58个新的激变变星候选体,表明了该方法的可行性,为在LAMOST海量光谱中快速搜索激变变星等稀少天体提供了有效途径。 An automatic and efficient method for LAMOST's massive spectral data reduction is presented in this paper.The identified cataclysmic variables were selected as templates to construct the feature space by PCA(the principal component analysis),and most of the non-candidates were excluded by the method using support vector machine.Template matching strategy was used to identify the final candidates which were analyzed to complement the templates as feedback.Fifty eight new CVs candidates were found in the experiment,showing that our approach to finding special celestial bodies can be practical in LAMOST.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2011年第8期2278-2282,共5页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(10973021 11078013)资助
关键词 激变变星 数据挖掘 主分量分析 支持向量机 Cataclysmic variables Data mining PCA SVM
  • 相关文献

参考文献13

  • 1Madgwick. Astrophys. J. 2003, 599: L33.
  • 2Tu Liang-ping. Supernova Candidates from SDSS-DR7 of Spectral Survey. Research in Astronomy and Astrophysics, 2009, 9(6):635.
  • 3Szkody P, et al. The Astronomical Journal, 2002, 123: 430.
  • 4Szkody P, et al. The Astronomical Journal, 2003, 126: 1499.
  • 5Szkody P, et al. The Astronomical Journal, 2004, 128: 1882.
  • 6Szkody P, et al. The Astronomical Journal, 2005, 129: 2386.
  • 7Szkody P, et al. The Astronomical Journal, 2006, 131: 973.
  • 8Szkody P, et al. The Astronomical Journal, 2007, 134: 185.
  • 9LI Zong-yun,LI Uwu,HUJing-yao(李宗云,刘武,胡景耀).ActaAstronomicaSiniea(天文学报),1999,40(1):1.
  • 10Connolly A J, Szalay A S, Bershady M A, et al. Astron. J. , 1995, 110: 1071.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部