期刊文献+

基于基因表达谱的肿瘤识别与分类特征基因提取研究

Tumor Identification Based on Gene Expression Profiles and the Search About Extraction of the Feature Genes
原文传递
导出
摘要 针对基因表达谱信息基因提取的问题,使用Wilcoxon秩和检验方法进行"无关基因"的剔除,基于高低水平基因表达的特点,建立了关于高/低表达水平的双线性回归模型,基于残差分析提取了19个特征基因.使用启发式宽度优先搜索算法搜索最优基因子集,确定结肠癌的基因"标签",运用支持向量机对分类效果进行检验,分类效果良好. Based on the problem of extracting information gene expression profiles, we use the wilcoxon rank method to remove "unrelated genes ". Based on the characteristics of high and low levels of gene expression, the bilinear regression model is established on the high/low expression levels. The 19 feature genes is extracted based on the Residual analysis. The heuristic breadth-first search algorithm is used to search for the optimal gene subset, and then to determine the gene tag of colon cancer. There is good effect by the inspection for classification results using support vector machine.
出处 《数学的实践与认识》 CSCD 北大核心 2011年第14期67-79,共13页 Mathematics in Practice and Theory
基金 国家自然基金项目(61074123)
关键词 基因表达谱 基因标签 双线性回归模型 Bayse动态模型 gene expression profile gene labels bilinear regression model Bayse dynamic model
  • 相关文献

参考文献4

二级参考文献23

  • 1RAMASWAMY S,GOLUB T R.DNA Microarrays in Clinical Oncology[J].Journal of Clinical Oncology,2002,20 (7):1932 ~ 1941.
  • 2LANDER E S,WEINBERG R A.GENOMICS:Journey to the Center of Biology[J].Scince,2000,287(5459):1777 ~1782.
  • 3LANDER E S.Array of hope[J].Nature Genetics,1999,21(supp1 1):3 ~4.
  • 4ALON U,BARKAI N,NOTIERMAN D A,et al.Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays[J].Proc Natl Acad Sci Usa,1999,96:6745 ~ 6750.
  • 5ZHANG H,YU C Y,SINGER B,et al.Recursive Partioning for tumor classification with gene expression microarray data[J].Proc Natl Acad Sci Usa,2001,98:6730-67-35.
  • 6THEODORIDIS S,KOUTROUMBAS K.Pattern Recognition.second Edition[M].Elsevier Science,2003,177 ~ 179.
  • 7PADIL P,NOVOVICOVA J,KITTLER J.Floating Search Method in feature selection[J].Pattern Recognition Letters,1994,15:1119 ~ 1125.
  • 8边肇祺 张学工.模式识别(第2版)[M].北京:清华大学出版社,1998..
  • 9VAPNIK V N.Statistical Leaning Theory[M].New York:Wiley Interscience,1998.
  • 10GUYON I,WESTON J,BARNHILL S,et al.Gene selection for cancer classification using support vector machines[J].Machine Learning,2000,46 (13):389 ~ 242.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部