摘要
立足于隐式浏览信息难以获取的实际,首先定义能够描绘用户心理和行为的隐式兴趣度表达公式;接着得到了用户对产品类的兴趣度,从而得到了基于兴趣度的用户聚类分析结果。该研究不仅从一定程度上解决了用户信息获取的难题,也为推荐系统中的算法研究和推荐输出研究奠定了基础。
This paper studied implicit navigation which was the key issues in the recommender systems.At the beginning,defined the expression of implicit user interest level which could describe user psychology and behavior.Then derived the user interest level to product category.Finally,got aggregation analysis result based on user interest level.So,this research not only solves the problem of user information,but also will lay the foundation for the recommendation algorithms and output of the recommender systems.
出处
《计算机应用研究》
CSCD
北大核心
2011年第8期2862-2864,共3页
Application Research of Computers
关键词
推荐系统
隐式浏览输入
用户兴趣度
聚类分析
recommender systems
implicit navigation
user interest level
clustering analysis