期刊文献+

改进的SVM解决背景知识数据中的类不平衡 被引量:6

Handling class imbalance problem in context knowledge dataset based on improved SVM
下载PDF
导出
摘要 针对背景知识数据集中存在的类不平衡对分类器的影响,根据背景知识数据集样本量小、数据维数高的特性分析了目前各种方法在解决背景知识数据中的类不平衡问题时的缺陷,提出了一种基于分类后处理的改进SVM算法。改进算法引入权重参数调整SVM的分类决策函数,提高少类样本对分类器的贡献,使分类平面向多类样本倾斜,从而解决类不平衡对SVM造成的影响。在MAROB数据集上的实验表明,改进算法对少类的预测效果要优于传统的机器学习算法。 Focusing on the drawback that the performance of standard classifiers is often severely hindered in practice due to the imbalanced distribution of class in the context knowledge dataset,this paper analyzed the current methods' problem in resolving the class imbalance problem in the context knowledge dataset according to its small sample and high dimension features.Then,proposed an improved SVM algorithm.The proposed SVM used a weight parameter to adjust the decision function and improved the small sample class's contribution to the classification,and made the plane to move towards to the larger sample class.Thus,in this way,it handled the problem caused by the class imbalance.The experiment result based on MAROB dataset shows that the proposed algorithm is better than the standard classifiers to handle the class imbalance problem in the context knowledge dataset.
出处 《计算机应用研究》 CSCD 北大核心 2011年第8期2902-2904,2908,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(60773049) 江苏大学高级人才启动基金资助项目(09JDG041)
关键词 类不平衡 支持向量机 背景知识 恐怖行为方式预测 MAROB class imbalance SVM context knowledge terrorism behavior prediction MAROB
  • 相关文献

参考文献7

  • 1SU Peng, MAO Wen-ji, ZENG D, et al. Handling class imbalance problem in cultural modeling[ C ]//Proc of IEEE International Confe- rence on Intelligence and Security Informaties. New York: IEEE Press,2009 : 251-256.
  • 2李晓晨,毛文吉,曾大军,苏鹏,王飞跃.Performance Evaluation of Machine Learning Methods in Cultural Modeling[J].Journal of Computer Science & Technology,2009,24(6):1010-1017. 被引量:3
  • 3翟云,杨炳儒,曲武.不平衡类数据挖掘研究综述[J].计算机科学,2010,37(10):27-32. 被引量:37
  • 4JEATRAKUL P, WONG K W, FUNG C C. Misclassification analysis for the class imbalance problem [ C ]//Proc of World Automation Congress. New York: IEEE Press, 2010:1-6.
  • 5BATUWITA R, PALADE V. Efficient resampling methods for training support vector machines with imbalanced datasets[ C]//Proc of International Joint Conference on Neural Networks. Barcelona: IEEE Press, 2010:1-8.
  • 6郑恩辉,李平,宋执环.不平衡数据知识挖掘:类分布对支持向量机分类的影响[J].信息与控制,2005,34(6):703-708. 被引量:17
  • 7THAI-NGHE N, GANTNER Z, SCHMIDT-THIEME L. Cost-sensitive learning methods for imbalanced data[ C]//Proc of International Joint Conference on Neural Networks. Barcelona: IEEE Press,2010: 1-8.

二级参考文献99

  • 1张琦,吴斌,王柏.非平衡数据训练方法概述[J].计算机科学,2005,32(10):181-186. 被引量:10
  • 2韩慧,王路,温明,王文渊.不均衡数据集学习中基于初分类的过抽样算法[J].计算机应用,2006,26(8):1894-1897. 被引量:11
  • 3Subrahmanian V S. Computer science: Cultural modeling in real time. Science, 2007, 317(5844): 1509-1510.
  • 4Subrahmanian V S, Albanese M, Martinez M V, Nau D, Reforgiato D, Simari G I, Sliva A, Wilkenfeld J, Udrea O. CARA: A cultural-reasoning architecture. IEEE Intelligent Systems, 2007, 22(2): 12-16.
  • 5Khuller S, Martinez V, Nau D, Simari G, Sliva A, Subrahmanian V S. Finding most probable worlds of logic programs. In Proc. the First International Conference on Scalable Uncertainty Management, Washington DC, USA, October 10-12, 2007, pp.45-59.
  • 6Martinez V, Simari G I, Sliva A, Subrahmanian V S. CONVEX: Context vectors as a paradigm for learning group behaviors based on similarity. IEEE Intelligent Systems, 2007, 23(4): 51-57.
  • 7Wang F Y. Is culture computable? IEEE Intelligent Systems,2009, 24(2): 2-3.
  • 8Wang F Y, Carley K M, Zeng D, Mao W. Social computing: From social informatics to social intelligence. IEEE Intelliqent Systems, 2007, 22(2): 79-83.
  • 9Wang F Y. Toward a paradigm shift in social computing: The ACP approach. IEEE Intelligent Systems, 2007, 22(5): 65-67.
  • 10Zeng D, Wang F Y, Carley K M. Social computing. IEEE Intelligent Systems, 2007, 22(5): 20-22.

共引文献54

同被引文献39

引证文献6

二级引证文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部