期刊文献+

计算机病毒的最优控制模型 被引量:5

Optimal control model for computer viruses
下载PDF
导出
摘要 提出一个带有最优控制的SAIC模型,让感染病毒的节点数目和系统消耗保持在较低的水平。运用最优控制理论的相关原理和方法,证明了最优控制的存在性,并给出了刻画最优控制的最优系统。数值仿真结果表明,使用适当的控制策略后,计算机病毒的传播得到了有效的控制。所提的方法有望成为一种有用的工具来控制计算机病毒的传播。 This paper proposed a modified SAIC(susceptible,antidotal,infected,contaminated) model with optimal control,which was intended to keep both the number of infected nodes and the systemic cost levels low.By using the relevant principles and methods in optimal control theory,it proved the existence of an optimal control.In addition,characterized the optimal control by an optimality system.Numerical simulations show that the spread of computer virus can be controlled effectively with proper control strategies.The proposed method is expected to become a useful tool in controlling the spread of computer virus.
出处 《计算机应用研究》 CSCD 北大核心 2011年第8期3040-3042,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(10771227) 国家教育部新世纪优秀人才计划资助项目(NCET-05-0759) 中央高校基本科研业务费资助项目(CDJXS10181130)
关键词 非线性系统 最优控制 计算机病毒模型 SAIC模型 nonlinear systems optimal control computer virus model SAIC(susceptible antidotal infected contaminated)model
  • 相关文献

参考文献13

  • 1BILLINGS L, SPEARS W M, SCHWARTZ I B. A unified prediction of computer virus spread in cgnnected networks[J]. Physics Letters A, 2002, 297(6) :261-266.
  • 2ARAUJO V O. Modelagem Dinamica de virus de eomputador [ D ]. Sao Paulo, Brazil : Escola Politecnica da USP,2004.
  • 3PIQUEIRA J R C, NAVARRO B F. Epidemiologieal models applied to viruses in computer networks [ J ]. Journal of Computer Science, 2005, 1 ( 1 ) :31-34.
  • 4MISHRA B K, SAINI D. Mathematical models on computer viruses [J]. Applied Mathematics and Computation, 2007, 187(2): 929-936.
  • 5PIQUEIRA J R C, VASCONCELOS A A, GABRIEL C E C J, et al. Dynamic models for computer viruses [ J]. Computers & Security, 2008, 27(7) :355-359.
  • 6丁雪枫,马良,丁雪松.通用有效的动态系统网络病毒传播模型方法研究[J].计算机应用研究,2009,26(2):696-698. 被引量:2
  • 7HAN Xie, TAN Qiu-lin. Dynamical behavior of computer virus on Intemet[ J]. Applied Mathematics and Computation, 2010, 217 (7) :2520-2526.
  • 8周海平,蔡绍洪.病毒传播过程中个体的躲避行为对网络结构的影响[J].计算机应用研究,2010,27(8):3078-3080. 被引量:3
  • 9FISTER K R, LENHART S, MCNALLY J S. Optimizing chemotherapy in an HIV model[J]. Electron Journal of Differential Equations, 1998,32 : 1-12.
  • 10ZAMAN G, KANG Y H, JUNG I H. Optimal vaccination and treat ment in the SIR epidemic model [ J ]. Proceeding of the KSIAM, 2007,3(2) :31-33.

二级参考文献12

  • 1周海平,蔡绍洪,王春香.含崩塌概率的一维沙堆模型的自组织临界性[J].物理学报,2006,55(7):3355-3359. 被引量:11
  • 2BAILEY N T J.The mathematical theory of infectious diseases and its applications[M].New York:Hafner Press,1975.
  • 3ANDERSON R M,MAY R M.Infectious diseases in humans[M].Oxford:Oxford University Press,1992.
  • 4DIEKMANN O,HEESTERBEEK J A P.Mathematical epidemiology of infectious disease:model building,analysis and interpretation[M].New York:John Wiley,2000.
  • 5PASTOR-SATORRAS R,VESPIGNANI A.Epidemic spreading in scale-free networks[J].Phys Rev Lett,2001,84(4):3200-3203.
  • 6LIU Z H,LAI Y C,YE N.Propagation and immunization of infection on general networks with both homogeneous and heterogeneous components[J].Phys Rev E,2003,67:031911.
  • 7LIU J Z,WU J S,YANG Z R.The spread of infectious disease on complex networks with household-structure[J].Physica A,2004,341:273-280.
  • 8PASTOR-SATORRAS R,VESPIGNANI A.Immunization of complex networks[J].Phys Rev E,2001,65:036134.
  • 9M. L. Goldstein,S. A. Morris,G. G. Yen. Problems with fitting to the power-law distribution[J] 2004,The European Physical Journal B(2):255~258
  • 10周海平,蔡绍洪.基于二维规则网格的SIRS病毒传播模型[J].山东大学学报(理学版),2007,42(11):94-97. 被引量:5

共引文献3

同被引文献20

  • 1Wierman J C, Marchette D J. Modeling Computer Virus Prevalence with a Susceptible Infected Susceptible Model with Reintroduction[ J]. Computational Statistics & Analysis ,2004,45 ( 1 ) :3 - 23.
  • 2Yuan H, Chen G. Network Virus Epidemic Model with the Point to Group Information Propagation[ J]. Applied Mathematics and Computation,2008,206( 1 ) :357 - 367.
  • 3Mishra B K, Saini D K. SEIRS Epidemic Model with Delay for Transmission of Malicious Objects in Computer Network [ J ]. Applied Mathematics and Computation,2007,188 ( 2 ) : 1476 - 1482.
  • 4Billings L,Spears W M,Schwartz I B. A Unified Prediction of Computer Virus Spread in Connected Networks[ J]. Physics Letters A ,2002,297 (6) :261 - 266.
  • 5Piqueira J R C,Navarro B F. Epidemiological Models Applied to Viruses in Computer Networks[ J]. Joumal of Computer Science ,2005 ( 1 ) :31 - 34.
  • 6Gan C Q, Yang X F, Liu W P, et al. A Propagation Model of Computer Virus with Nonlinear Vaccination Probability [ J ]. Commun Nonlinear Sci Numer Simulat,2014 ,19 :92 - 100.
  • 7Mishra B K, Pandey S K. Dynamic Model of Worms with Vertical Transmission in Computer Network [ J]. Applied Mathematics and Comnutation.2011.217.8438 - 8446.
  • 8Zhu Q Y,Yang X F,Yang L X, et al. Optimal Control of Computer Virus Under a Delay Model[ J ]. Applied Mathematics and Computation ,2012,218 : 11613 - 11619.
  • 9Gan C Q, Yang X F, Liu W P, et al. An Epidemic Model of Computer Viruses with Vaccination and Generalized Nonlinear Incidence Rate[ J]. Applied Mathematics and Computation,2013,222:265 - 274.
  • 10Min L Q,Su Y M, Kuang Y. Mathematical Analysis of a Basic Virus Infection Model with Application to HBV Infection [ J]. Rocky Mountain J Math,2008,38:1573 - 1584.

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部