期刊文献+

图像语义标注中的叙词查询方法 被引量:1

Thesaurus retrieval approach in semantic image annotation
下载PDF
导出
摘要 为了在图像语义标注领域能更好地反映标注之间的关系,通过对已标注图像的标注进行分析来建立标注之间的关系,在此基础上将叙词查询的概念引入到图像语义标注中,并提出了基于叙词查询的图像语义标注方法,把语义标注问题统一在叙词查询与图像的语义关系相结合的统一的框架下。最后通过在Corel图像数据库中的验证表明,所提出的方法是有效的,并且标注率得到了明显的提高。 To better represent the correlation among keywords in image annotation domain, this paper analyzed the annotated images and built the correlation of keywords. Furthermore, studied the traditional image annotation framework and presented a novel image annotation framework based on thesaurus retrieval, which used the visual features to retrieve the related images from image database, then embedded the correlation among keywords in the proposed image annotation framework, it is the first time to introduce thesaurus retrieval in image annotation domain, experimental results show that the performance of the annota- tion is greatlv imoroved on Corel datasets.
出处 《计算机应用研究》 CSCD 北大核心 2011年第8期3174-3177,共4页 Application Research of Computers
基金 国家教育部科研重点资助项目(107021)
关键词 语义标注 叙词查询 图像检索 in image annotation domain this paper analyzed the annotated images and built the correlation of Key words.Furthermore studied the traditional image annotation framework and presented a novel image annotation framework based on thesaurus retrieval which used the visual features to retrieve the related images from image database then embedded the correlation among Key words in the proposed image annotation framework it is the first time to introduce thesaurus retrieval in image annotation domain experimental results show that the performance of the annotation is greatly improved on Corel datasets. Key words: semantic annotation thesaurus retrieval image retrieval
  • 相关文献

参考文献12

  • 1SUN J J, CHENG Y, DING Q,et al. Information retrieval [ M ]. Beijing: Science Press, 2004.
  • 2盛秋艳,刘群.一种基于本体的叙词语义描述方法[J].情报科学,2007,25(9):1415-1418. 被引量:6
  • 3戴剑波.叙词在网络环境中的应用[J].情报科学,2004,22(4):502-505. 被引量:6
  • 4JIN Y H, KHAN L, WANG Lei, et al. Image annotations by combiningmultiple evidence & wordnet [ C ]//Proc of the 13th Annual ACM International Conference on Multimedia. New York:ACM Press,2005: 706 -715.
  • 5WANG Chang-hu, JING Feng,ZHANG Lei,et al. Image annotation refinement using random walk with restarts [ C ]//Proc of ACM International Conference on Multimedia. New York : ACM Press, 2006 : 647- 650.
  • 6WANG Yang, MEI Tao, GONG Shao-gang. Combining global, regional and contextual features for automatic image annotation [ J ]. Pattern Recognition ,2009,42 ( 2 ) :259-266.
  • 7王斌,俞能海.一种针对大规模网络图像的自动标注改善算法[J].电子与信息学报,2009,31(2):270-274. 被引量:2
  • 8BINCENT L,SOILLE P. Watersheds in digital spaces:an efficient algorithm based on immersion simulations[ J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1991,13 ( 6 ) :583-598.
  • 9KANUNGO T,MOUNT D M,NETANYAHU N S,et al. A local search approximation algorithm for K-means clustering[ C ]//Proc of the 18 th Annual ACM Symposium on Computational Geometry. New York: ACM Press ,2003 : 1-25.
  • 10TUAN D P. Image segmentation using probabilistic fuzzy C-means clustering [ C ]//Proc of International Conference on Image Processing. 2001:722-725.

二级参考文献32

  • 1刘颖,詹萌.Ontology在数字图书馆领域中的应用与研究综述[J].图书馆杂志,2005,24(6):53-58. 被引量:5
  • 2赵焕洲,唐爱民.对两种知识组织系统——叙词表与Ontology的比较研究[J].情报理论与实践,2005,28(5):469-471. 被引量:12
  • 3Duygulu P, Barnard K, and Freitas J, et al.. Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary, European Conference on Computer Vision, Copenhagen, Denmark, 2002: 97-112.
  • 4Jeon J, Lavrenko V, and Manmatha R. Automatic image annotation and retrieval using cross-media relevance models In Proceedings of Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Toronto, Canada, 2003: 119-126.
  • 5Wang X, Zhang L, and Jing F, et al.. AnnoSearch: image auto-annotation by search. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, USA, 2006, Vol. 2: 1483-1490.
  • 6Deschacht K and Moens M. Text analysis for automatic image annotation. 45th Annual Meeting of the Association of Computational Linguistics, Prague, Czech, 2007: 1000-1007.
  • 7Zhang R, Zhang Z, and Li M, et al.. A probabilistic semantic model for image annotation and multi-modal image retrieval, Springer Multimedia Systems, 2006, Vol. 12: 27-33.
  • 8Zhou D, Weston J, and Gretton A, et al.. Ranking on data manifolds. MPI Technical Report (113), Max Planck Institute for Biological Cybernetics, Ttibingen, Germany, June 2003.
  • 9Zhou D, Huang J, and Scholkopf B. Beyond pairwise classification and clustering using hypergraphs. MPI Technical Report (143), Max Planck Institute for Biological Cybernetics, Tubingen, Germany, 2005.
  • 10Tong H, He J, and Li M, et al.. Graph based multimodality learning. In Proceedings of ACM Multimedia, Singapore, 2005: 862-871.

共引文献11

同被引文献20

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部