期刊文献+

Do Media Sentiments Reflect Economic Indices?

Do Media Sentiments Reflect Economic Indices?
下载PDF
导出
摘要 Forecasting economic indices on the basis of information extracted from text documents, like newspaper articles is an attractive idea. With the help of text mining techniques, in particular sentiment analysis, we evaluate the tone of individual New York Times (NYT) articles and compare our results to the Chicago Fed National Activity Index (CFNAI). In this paper, we present a simple, intuitive framework to derive sentiment scores from text documents In particular articles are tagged based on terms and their connotated sentiment. Subsequently, we forecast the CFNAI movements via support vector machines (SVM) trained on a subset of the observed sentiment scores. We apply our model into two different data sets, the whole NYT articles and the articles categorized as NYT business news. On both data sets, we applied a simple performance measure to evaluate forecasting accuracy of the CFNAI
出处 《Chinese Business Review》 2011年第7期487-492,共6页 中国经济评论(英文版)
关键词 text mining sentiment analysis support vector machines (SVM) forecasting 经济指标 情绪 媒体 文本文件 景气指数 支持向量机 挖掘技术 模型应用
  • 相关文献

参考文献13

  • 1Askitas, N., & Zimmermann, K. F. (2009). Google econometrics and unemployment forecasting. Applied Economics Quarterly, 55(2), 107-120.
  • 2Cao, L., & Tay, F. E. (2001 ). Financial forecasting using support vector machines. Neural Computing and Application, 10, 184-192.
  • 3Das, S. R., &Chen, M. Y. (2007). Yahoo! for Amazon: Sentiment extraction from small talk on the web. Management Science, 53(9), 1375-1388.
  • 4Doms, M., & Morin, N. (2004). Consumer sentiment, the economy, and the news media. FRBgF Working paper 2004-2009. Retrieved from http://ideas.repec.org/p/fip/fedfap/2004-09.html.
  • 5Feinerer, I., Homik, K., & Meyer, D. (2008). Text mining infrastructure in R. Journal of Statistical Software, 25(5), 1-54.
  • 6Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference and prediction (2nd ed). Springer.
  • 7Huang, W., Nakamori, Y., & Wang, S. Y. (2005). Forecasting stock market movement direction with support vector machine. Computers & Operations Research, 32, 2513-2522.
  • 8Karatzoglou, A., Meyer, D., & Homik, K. (2006). Support vector machines in R. Journal of Statistical Software, 15(9), 1-28.
  • 9Li, N., & Wu, D. D. (2010). Using text mining and sentiment analysis for online forums hotspot detection and forecast. Decision Support Systems, 48, 354-368.
  • 10Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1-2), 1-135.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部