期刊文献+

开放式智能控制器的设计与加工实现 被引量:10

Design and machining for open intelligent controller
下载PDF
导出
摘要 针对传统数控系统的封闭式结构及无法实现自主实时获得最佳切削参数的问题,设计并开发了一个模块化的、能实现基于约束控制的、加工参数可在线调整的自适应开放式智能控制器。构建了该控制器中自适应控制技术的实现体系,通过建立自适应约束控制与插补控制之间的有限状态机任务模型,解决了两者之间指令的有效融合及同步问题。基于切削力为约束的模糊自适应控制器进行的实际切削试验表明了所建集成式智能自适应控制体系的可行性和有效性。 Aiming at the problems of traditional closed structure of Computer Numberical Control(CNC) and the real-time optimal cutting parameters couldn't be obtained automatically,a self-adaptive open intelligent controller was designed and developed,which was modularity and could realize online adjustment based on constrained goals and machining parameters.Architecture of the open intelligent controller was established.Through setting up finite state machine model between adaptive constrained control and interpolation control,problems of effective fusion and synchronization between them were solved.Practical milling experiments of fuzzy adaptive controller based on cutting force as the constrained verified the integrate intelligent adaptive control system's feasibility and validity.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2011年第7期1441-1447,共7页 Computer Integrated Manufacturing Systems
基金 国家数控重大专项资助项目(2009zx04002-051)~~
关键词 开放式智能控制器 自适应控制 数控系统 集成 模块化 open intelligent controller adaptive control numerical control system integration modularity
  • 相关文献

参考文献1

二级参考文献6

  • 1Li Z Z, Zheng M. A solid model-based milling process simulation and optimization system with CAD/CAM[J]. Journal of Materials Processing Technology, 2003, 138: 513-517.
  • 2Yazar Z. Feedrate optimization based on cutting force calculations in 3-axis milling of dies and molds with sculptured surface [J]. International Journal of Machine Tools and Manufacture, 1994, 34:365-377.
  • 3Lim M, Hsiang M C. Integrated planning for precision machining of complex surface [J]. International Journal of Machine Tools and Manufacture, 1997, 37: 77- 91.
  • 4Fussell B K, Jerard R B, Hemmett J G. Modeling of cutting geometry and forces for 5-axis sculptured surface machining [J]. Computer Aided Design, 2003, 35 : 333-346.
  • 5Merdol S D, Altintas Y. Virtual cutting and optimization of three-axis milling processes [J]. International Journal of Machine Tools and Manufacture, 2008, 48:1063-1071.
  • 6吴大中,王宇晗,冯景春,杨建国.五坐标数控加工的非线性运动误差分析与控制[J].上海交通大学学报,2007,41(10):1608-1612. 被引量:46

同被引文献83

  • 1姚小群,姚锡凡,陈统坚,刘志良,邹伟全.基于信息熵的模拟退火算法优化铣削加工模糊控制器参数[J].工具技术,2006,40(4):35-37. 被引量:1
  • 2于英华,徐兴强,徐平.切削颤振的在线监测与控制研究现状分析[J].振动与冲击,2007,26(1):130-132. 被引量:17
  • 3周祖德,龙毅宏,刘泉.嵌入式网络数控技术与系统[J].机械工程学报,2007,43(5):1-7. 被引量:43
  • 4OLIVEIRA J F G, SILVA E J, GUO C, et al. Industrial challenges in grinding [J]. CIRP Annals-L-Manufacturing Technology, 2009,58 (2) : 663-680.
  • 5CILIZ M K,TOMIZUKA M. Friction modeling and compensa- tion for motion control using hybrid neural network models [J]. Engineering Applications of Artificial Intelligence, 2007, 20(7) :898-911.
  • 6KHAYATI K, BIGRAS P, DESSAINT L A. LuGre model- based friction compensation and positioning control for a pneu- matic actuator using multi-objective output-feedback control via LMI optimization[J]. Mechatronics, 2009,19(4) : 535-547.
  • 7XI Xuecheng, POO A N, HONG G S. Tracking error-based static friction compensation for a bi-axial CNC machine[J]. Precision Engineering,2010,34(3) :480-488.
  • 8ALTINTAS Y, VERL A, BRECHER C, et al. Machine tool feed drives [J ]. CIRP Annals-Manufacturing Technology, 2011,60(2) : 779-796.
  • 9GARAGIC D, SRINIVASAN K. Adaptive friction compensa- tion for precision machine tool drive[J]. Control Engineering Practice, 2004,12 (11) : 1451-1464.
  • 10BORSOTTO B, GODOY E. An identification method for stat- ic and coulomb friction coefficients[J]. International Journal of Control, Automation, and Systems,2009,7(2) :305-310.

引证文献10

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部