期刊文献+

基于FP-tree的快速挖掘全局最大频繁项集算法 被引量:2

Fast algorithm for mining global maximum frequent itemsets based on FP-tree
下载PDF
导出
摘要 挖掘最大频繁项集的算法多基于局部数据库,为此提出了一种基于频繁模式树的快速挖掘全局最大频繁项集算法。该算法首先挖掘出所有全局频繁项目组成集合,然后各个节点根据该集合构建局部频繁模式树,最后将该集合作为全局最大频繁候选项集,采用自顶向下策略挖掘出所有的全局最大频繁项集。与类Apriori算法相比,该算法采用的频繁模式树结构能大幅度降低数据库扫描次数和运行时间;自顶向下的策略能大幅度减少候选项集数和通信量。实验结果表明,该算法是快速和高效的。 Most mining maximum frequent itemsets algorithm based on local data base,so a fast algorithm for Mining Global Maximum Frequent Itemsets based on Frequent pattern tree(MGMFIF) was proposed.MGMFIF mined all global frequent items and made itemset,then local Frequent-Pattern tree(FP-tree) of each node was constructed based on this itemset.Finally,this itemset was chose as global maximum frequent itemsets,and all the global maximum frequent itemsets were obtained by top-down strategy.By adopting FP-tree structure,MGMFIF greatly reduced database scanning times and runtime comparing to Apriori-like algorithms.MGMFIF remarkably lessened candidate itemsets and communication traffic by using top-down strategy.Experimental results suggested that MGMFIF was fast and effective.
作者 何波
出处 《计算机集成制造系统》 EI CSCD 北大核心 2011年第7期1547-1552,共6页 Computer Integrated Manufacturing Systems
关键词 数据挖掘 频繁模式树 全局最大频繁项集 算法 data mining frequent-pattern tree global maximum frequent itemsets algorithms
  • 相关文献

参考文献5

二级参考文献31

  • 1颜跃进,李舟军,陈火旺.基于FP-Tree有效挖掘最大频繁项集[J].软件学报,2005,16(2):215-222. 被引量:68
  • 2陆介平,杨明,孙志挥,鞠时光.快速挖掘全局最大频繁项目集[J].软件学报,2005,16(4):553-560. 被引量:27
  • 3赵辉,王黎明.一个基于网格服务的分布式关联规则挖掘算法[J].小型微型计算机系统,2006,27(8):1544-1548. 被引量:9
  • 4Lin Dao I,Proc the 6th European Conference on Extending Database Technology,1998年,105页
  • 5Agrawal R,Proc the 11th Inter Conference on Data Engineering,1995年,3页
  • 6Han J, Kamber M. Data Mining: Concepts and Techniques. Beijing: High Education Press, 2001.
  • 7Agrawal R, ImielinSki T, Swami A. Mining association rules between sets of items in large database. In: Proc. of the ACM SIGMOD Int'l Conf. on Management of Data. Vol 2, Washington DC: SIGMOD, 1993. 207-216.
  • 8Agrawal, R Srikant. Fast algorithms for mining association rules. In: Proc. of the 20th Int'l Conf. Very Large Data Bases(VLDB'94). 1994.487-499.
  • 9Han J, Pei J, Yin Y. Mining frequent patterns without candidate generation. In: Proc. of the 2000 ACM-SIGMOD Int'l Conf. on Management of Data. Dallas: ACM Press, 2000. 1-12.
  • 10Bayardo RJ. Efficiently mining long patterns from databases. In: Haas LM, Tiwary A, eds. Proc. of the ACM SIGMOD Int'l Conf.on Management of Data. New York: ACM Press, 1998.85-93.

共引文献243

同被引文献19

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部