期刊文献+

基于压缩感知的频率编码脉冲雷达高分辨距离成像方法 被引量:2

High Resolution Range Imaging Method for Frequency-coded Pulse Radar Based on Compressive Sensing
下载PDF
导出
摘要 针对频率编码脉冲雷达(Frequency-Coded Pulse Radar,FCPR),该文提出一种基于压缩感知(Compressive Sensing,CS)的目标高分辨距离成像方法。利用目标场景的空间稀疏性,建立FCPR目标回波稀疏信号模型,提出基于CS的FCPR脉冲相参合成处理方法。该方法采用少量FCPR信号子脉冲对目标频域响应进行采样,即可提取目标高分辨距离像信息。为了降低CS重构算法的运算复杂度,提出一种基于FFT目标速度预估计的动态构造降维感知矩阵的方法,提高了采用CS进行FCPR脉冲相参合成处理的速度。仿真结果表明该方法较传统IFFT脉冲相干合成算法具有更小的目标强散射中心幅度估计误差,对速度估计误差及噪声的鲁棒性更好。 A novel Compressive Sensing(CS) based high resolution target range imaging method for Frequency-Coded Pulse Radar(FCPR) is proposed in this paper.Considering spatial sparsity of the target scene,a FCPR target sparse signal model is derived.A FCPR pulses coherent synthesis processing method is presented.Target frequency domain response is sampled with only a few FCPR sub-pulses,from which target high resolution range information is reconstructed exactly.A dynamic creation of deduced dimension sensing matrix based on target velocity pre-estimation using FFT is proposed.This method reduces the computational complexity of CS recovery algorithms and promotes the speed of CS based FCPR pulses coherent synthesis processing.Computer simulations show that the presented method performs better than traditional IFFT pulses coherent synthesis processing algorithm with smaller magnitude estimation error of strong target scattering center and better robustness against velocity estimation error and noise.
出处 《电子与信息学报》 EI CSCD 北大核心 2011年第7期1678-1683,共6页 Journal of Electronics & Information Technology
基金 南京理工大学自主科研专项计划(2010ZYTS028 2010ZDJH05) 南京理工大学科研启动基金资助课题
关键词 频率编码脉冲雷达 高分辨距离像 压缩感知 速度预估计 Frequency-Coded Pulse Radar(FCPR) High resolution range imaging Compressive Sensing(CS) Velocity pre-estimation
  • 相关文献

参考文献17

  • 1Wehner D R. High-Resolution Radar [M]. 2nd Edition, London: Artech House, 1995: 197-238.
  • 2Vasquez R and Flores B C. Fourier transform receiver processing of hopped frequency sequences for synthetic range profile generation [J]. Proceedings of SPIE, 1996, 2845: 14-25.
  • 3Baraniuk R G, Candes E J, and Etad M, et al.. Applications of sparse representation and compressive sensing [J]. Proceedings of the IEEE, 2010, 98(6): 906-909.
  • 4Candes E J, Romberg J, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 5Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 6Potter L C, Ertin E, and Parker J T, et al.. Sparsity and compressed sensing in radar imaging [J]. Proceedings of the IEEE, 2010, 98(6):1006-1020.
  • 7Baraniuk R and Steeghs P. Compressive radar imaging [C]. 2007 IEEE International Radar Conference, Boston, Massachusetts, USA, April 17-20, 2007: 128-133.
  • 8Tello A M, Lopez-Dekker F, and Mallorqui J J. A novel strategy for radar imaging based on compressive sensing [J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(12): 4285-4295.
  • 9Gurbuz A C, McClellan J H, and Scott W R. A compressive sensing data acquisition and imaging method for stepped frequency GPRs [J]. IEEE Transactions on Signal Processing, 2009, 57(7): 2640-2650.
  • 10Suksmono A B, Bharata E, and Lestari A A, et al.. Compressive stepped-frequency continuous-wave ground- penetrating radar [J]. IEEE Geoseienee and Remote Sensing Letters, 2010, 7(4): 665-669.

同被引文献3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部