期刊文献+

纳米CMOS电路逻辑等效变换 被引量:3

Logic Equivalent Transformation for Nano-meter CMOS Hybrid Circuits
下载PDF
导出
摘要 针对纳米CMOS电路连通域结构约束,该文提出了基于逻辑复制方法的电路等效变换技术以降低电路映射复杂性。首先通过对电路中所有的门扇出值进行排序来选定基准高扇出值;然后对于高扇出门单元通过二次方程式计算变换前后复杂度,对复杂度降低的高扇出门单元执行逻辑复制并进行扇出分割。与传统插入反相器方法网表转换法比较,结果表明使用该文提出的方法电路不仅更快速地被映射到纳米混合电路单元上,而且具有更好的时延特性。 Regarding the connectivity domain constraint in nano-meter circuit architecture,this paper proposes a circuit equivalent transformation method based on logic replication for reducing mapping complexity.The fanout degrees of all gates in a circuit are recorded and sorted to select the reference of high fanout value.Then a quadratic equation is formulated to evaluate whether the mapping complexities of the gates are reduced.Finally,the gate which has fanout degree larger than the reference high fanout value will be replicated if the complexity degree is reduced.The proposed method can not only make circuits easily to map,but also achieve better timing than buffer insertion.
出处 《电子与信息学报》 EI CSCD 北大核心 2011年第7期1733-1737,共5页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60871022,61041001) 浙江省自然科学基金(Z1090622,Y1080654)资助课题
关键词 纳米CMOS电路 映射 等效变换 逻辑复制 Nano-meter CMOS circuit Mapping Equivalent transformation Logic replication
  • 相关文献

参考文献10

  • 1Lu Wei and Lieber Charles M. Nanoelectronics from the bottom up[J]. Nature Materials, 2007, 6: 841-850.
  • 2Likharev K K and Strukov D B. CMOL: Devices, Circuits, and Architectures. Introducing Molecular Electronics[M]. Berlin: Springer, 2005: 447-477.
  • 3Likharev K K. Hybrid CMOS/nanoelectronic circuits: opportunities and challenges[J]. Journal of Nanoelectronics and Optoelectronics, 2008, 3(3): 203-230.
  • 4Strukov D B and Likharev K K. Defect-tolerant architectures for nanoelectronic crossbar memories[J]. Journal of Nanoscience and Nanotechnology, 2007, 7(1): 151-167.
  • 5Strukov D B and Likharev K K. CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices[J]. Nanotechnology, 2005, 16(6): 888-900.
  • 6Strukov D B and Williams R S. Four-dimensional address topology for circuits with stacked multilayer crossbar arrays[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(48): 20155-20158.
  • 7TUrel 0, Lee Hoon J, and Ma X, et al.. Nanoelectronic neuromorphic networks (crossNets): new results[C]. IEEE International Conference on Neural Networks-Conference Proceedings, Budapest, Hungary, July 25-29, 2004: 389-394.
  • 8Chen Gang, Song Xiao-yu, and Hu Ping. A theoretical investigation on CMOL FPGA cell assignment problem[J]. IEEE Transactions on Nanotechnology, 2009, 8(3): 322-329.
  • 9Srivastava Ankur, Kastner Ryan, and Chen Chun-hong, et al. Timing driven gate duplication[J]. IEEE Transactions on Very Large Scale Integration (VLS1) Systems, 2004, 12(1): 42-51.
  • 10Xia Yin-shui, Chu Zhu-fei, and Hung William N N, et al.. CMOL cell assignment by genetic algorithmiC]. 8th IEEE international NEWCAS Conference, Montreal, Canada, June 20-23, 2010: 25-28.

同被引文献28

  • 1Likharev K K and Strukov D B. CMOL: Devices, Circuits, and Architectures. Introducing Molecular Electronics[M]. Berlin: Springer, 2005: 447-477.
  • 2Chen Gang, Song Xiao-yu, and Hu Ping. A theoretical investigation on CMOL FPGA cell assignment problem[J]. IEEE Transactions on Nanotechnology, 2009, 8(3): 322-329.
  • 3Strukov D B and Likharev K K. Defect-tolerant architectures for nanoelectronic crossbar memories[J]. Journal of Nanoscience and Nanotechnology, 2007, 7(1): 151-167.
  • 4Strukov D B and Likharev K K. CMOL FPGA circuits[C]. Proceedings of International Conference on Computer Design, Las Vegas, Nevada, USA, June 26-29, 2006: 213-219.
  • 5Afifi A, Ayatollahi A, and Raissi F. CMOL implementation of spiking neurons and spike-timing dependent plasticity[J]. International Journal of Circuit Theory and Applications, 2011, 39(4): 357-372.
  • 6Kim K, Karri R, and Orailoglu A. Design automation for hybrid CMOS-nanoelectronics crossbars[C]. Proceedings of IEEE International Symposium on Nanoscale Architectures, Los Alamitos, CA, USA, October 21-22, 2007: 27-32.
  • 7Xia Yin-shui, Chu Zhu-fei, and Hung N N, et al.. An intergrate optimizaiton approach for nano-hybrid circuit cell mapping[J]. IEEE Transactions on Nanotechnology, 2011, 10(6): 1275-1284.
  • 8Hung N N, Gao Chang-jian, and Song Xiao-yu, et al.. Defect tolerant CMOL cell assignment via satisfiability[J]. IEEE Sensors Journal, 2008, 8(6): 823-830.
  • 9Chen Jing-chao. A new SAT encoding of the at-most-one constraint[C]. Proceedings of the Tenth International Workshop on Constraint Modelling and Reformulating, St. Andrews, Scotland, UK, September 6, 2010.
  • 10Roussel O and Manquinho V. Pseudo-Boolean and Cardinality Constraints. Handbook of Satisfibility[M]. Amsterdam: IOS Press, 2009: 695-733.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部