期刊文献+

基于USFFTCurvelet变换图像去噪算法 被引量:2

Image Denoising Algorithm based on USFFT Curvelet Transform
下载PDF
导出
摘要 为了更好地保留图像的高频细节信息,有效地避免图像重构中出现边缘扭曲现象。提出一种基于USFFTCurveIet变换的图像去噪算法。该方法首先对噪声图像进行USFFTCurvelet变换,在变换域计算噪声图像具有的全局阈值,然后采用窗口技术自适应地估计每个处理像素的萎缩因子,通过usF几、Curvelet反变换得到去噪后的图像信号。实验结果表明本文算法取得较高的信噪比,更好地保留了图像中存在的边缘,同时在视觉效果上也取得了较好的效果。 In order to preserve the detail information of high frequency of images, and to avoid the phenomenon of edge slant during the image re- construction, The image denoising method via USFFT Curvelet transform is proposed in this paper. The USFFT Curvelet transform is used to the im- age, the global threshold value is estimated in the Curvelet domain. The window technique is used to compute the shrinkage factor corresponding to pixel value. The de-noised image signal is obtained by using inverse USFFT Curvelet transform. The experimental results show that the algorithm ob- tains a higher PSNR value for gray and color images. It preserves image edge well and acquires a good de-noised effect and visual effect.
作者 姚胜南 金野 唐降龙 YAO Shengnan, JIN Ye, TANG Xianglong (1 Equipment Manufacturing Industry Research Institute, Zhongshan, Guangdong 528400, China; 2 Computer Science & Technology School, Harbin Institute of Technology, Harbin 150001, China)
出处 《智能计算机与应用》 2011年第1X期17-19,27,共4页 Intelligent Computer and Applications
基金 基金项目:国家自然科学基金(60702032).
关键词 小波变换 RIDGELET变换 CURVELET变换 图像去噪 Wavelet Transform Ridgelet Transform Curvelet Transform Image Denoising
  • 相关文献

参考文献11

  • 1焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 2LUISIER F,BLU T.SURE-LET Multichannel Image Denoising:Interscale Orthonormal Wavelet Thresholding. IEEE Transac-tionon Image Processing . 2008
  • 3CANDES E J,DONOHO D L.Curvelets-Asurprisingly EffectiveNon-adaptive Representation for Objects with Edge Curvesand Surfaces. . 2000
  • 4STARCK J L,,CANDES E,Donoho.The Curvelet Transform forImage Denoising. IEEE Transactions on Image Processing . 2002
  • 5Rudin L,Osher S,Fatemi E.Nonlinear total variation based noise removal algorithms. Physica D Nonlinear Phenomena . 1992
  • 6Zhe-Ming LU,Dian-Guo XU,Sheng-He SUN.Multipurpose Image Watermarking Algorithm Based on Multistage Vector Quantization. IEEE Transactions on Image Processing . 2005
  • 7Perona P,Malik J.Scale-space and edge detection usinganisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1990
  • 8Chang SG,Yu B,Vetterli M.Adaptive wavelet thresholding for image denoising and compression. IEEE Transactions on Image Processing . 2000
  • 9Donoho DL,Duncan MR.Digital curvelet transform:strategy,implementation and experiments. Proceedings of SPIE Aerosense 2000 . 2000
  • 10Candes EJ,Demanet L,Donoho DL,et al.Fast Discrete Curvelet Transforms. Applied and Computational Mathematics . 2005

二级参考文献58

  • 1[5]Stephane Mallat.信号处理的小波导引[M].杨力华,等译.北京:机械工业出版社,2003.
  • 2[1]EJ Candes. Ridgelets:Theory and Applications[D].USA:Department of Statistics, Stanford University, 1998.
  • 3[2]E J Candes. Monoscale Ridgelets for the Representation of Images with Edges[ R]. USA: Department of Statistics, Stanford University, 1999.
  • 4[3]Candes E J, D L Donoho. Curvelets[R]. USA: Department of Statistics,Stanford University, 1999.
  • 5[4]E L Pennec, S Mallat. Image compression with geometrical wavelets[A]. In Proc. of ICIP' 2000 [ C ]. Vancouver, Canada, September,2000.661-664.
  • 6[5]M N Do, M Vetterli. Contourlets[ A ] .J Stoeckler, G V Welland. Beyond Wavelets [ C ]. Academic Press, 2002.
  • 7[7]D L Donoho,M Vetterli,R A DeVore, I Daubechies. Data compression and harmonic analysis [ J ]. IEEE Trans, 1998, Information Theory-44(6) :2435 - 2476.
  • 8[8]M Vetterli. Wavelets, approximation and compression [ J ]. IEEE Signal Processing Magazine,2001,18(5) :59 - 73.
  • 9[9]R A DeVore. Nonlinear approximation[ A].Acta Numerica[ M]. Cambridge University Press, 1998.
  • 10[10]D L Donoho. Sparse component analysis and optimal atomic decomposition[J]. Constructive Approximation, 1998,17:353 - 382.

共引文献226

同被引文献13

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部