期刊文献+

基于超熵和模糊集理论的带钢表面缺陷分割 被引量:13

Steel strip surface defect segmentation based on excess entropy and fuzzy set theory
下载PDF
导出
摘要 由于冷轧带钢表面缺陷图像中存在过渡区,在图像分割过程中既要利用灰度信息也要利用空间结构信息才能取得好的分割效果。因此,本文研究了信息熵中的超熵以及模糊集理论,根据超熵可以用来测度图像的空间结构,模糊集可以描述出图像灰度过渡区的特性,提出了一种基于超熵和模糊集理论的图像分割算法。结合超熵和模糊集理论构建出模糊超熵,通过计算图像的最大模糊超熵所对应的最优隶属度函数参数组合确定了分割阈值,并利用该阈值完成图像分割。将该算法与Ostu以及一维最大模糊熵分割算法相比较,结果显示,本文算法能够准确地从背景中提取缺陷,有效地抑制了过分割现象。利用提出的误分割率和有效信息率对分割后的图像进行定量评价,结果表明,用本文算法分割后的图像有效信息率在3种方法中最高,均在82.7%以上,同时误分割率均低于2.1%。 Because of the existence of transition zones in a cold rolling strip surface defect image,gray information and spatial structure information should be combined to segment images to obtain better image results.Therefore,the excess entropy of information entropy and fuzzy set theory were researched.As the excess entropy could be used to measure spatial structure of an image and the characteristic of image gray transition zone could be described well by the fuzzy set,an image threshold segmentation algorithm based on maximal fuzzy excess entropy was proposed.The fuzzy excess entropy was built by the combination of excess entropy and fuzzy set theory and the threshold was determined by the best membership function parameter combination according to the maximal fuzzy excess entropy value.Then,the image was segmented by using the threshold.Finally,the algorithm was compared with Ostu and 1D maximal fuzzy entropy segmentation algorithms.The experiment indicates that the proposed algorithm can extract the defect from a background exactly and can constrain the over-segmentation effectively.The quantificational evaluation of segmented image was performed by the wrong segmentation rate and effective information rate,and the results show that the effective information rate of the algorithm is higher than 82.7%,which is the maximal one among three methods.Meanwhile the wrong segmentation rate is below 2.1%.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2011年第7期1651-1658,共8页 Optics and Precision Engineering
基金 国家863高技术研究发展计划资助项目(No.2007AA041501) 国家重大科技专项资助项目(No.2009ZX04004-062) 哈尔滨工业大学科研创新基金资助项目(No.HIT.NSRIF.2009023)
关键词 缺陷图像 模糊理论 超熵 图像分割 defect image fuzzy theory excess entropy image segmentation
  • 相关文献

参考文献15

  • 1JUKKA I, JUHANI R, ARI V. Unsupervised seg- mentation of surface defects[C]. Proceedings of the 13th International Conference on Pattern Recogni- tion, Vienna, 1996, August, 25-29, 4 :356-360.
  • 2杨水山,何永辉,赵万生,彭铁根.Mean shift算法在带钢缺陷图像分割中的应用[J].西安电子科技大学学报,2007,34(6):1015-1018. 被引量:4
  • 3SHARIFZADEH M, ALIREZAEE S, AMIRFAT- TAHI R, et al.. Detection of steel defect using the image processing algorithms[C]. Proceedings of the 12th IEEE International Multitopic Confer- ence, Karachi, 2008, December , 23-24:125-127.
  • 4李洪艳,曹建荣,谈文婷,刘彩云.图像分割技术综述[J].山东建筑大学学报,2010,25(1):85-89. 被引量:15
  • 5程万胜,臧希喆,赵杰,蔡鹤皋.面向Otsu阈值搜索的PSO惯性因子改进方法[J].光学精密工程,2008,16(10):1907-1912. 被引量:13
  • 6CHEN Y B, CHEN O T C. Image segmentation method using thresholds automatically determined from picture contents[J].Journal on Image and Video Processing, 2009, 2009: 1-15.
  • 7张麒,汪源源,王威琪,马剑英,钱菊英,葛均波.活动轮廓模型和Contourlet多分辨率分析分割血管内超声图像[J].光学精密工程,2008,16(11):2303-2311. 被引量:20
  • 8MIHA M, DEJAN T, FRANJO P, et al.. Real- time image segmentation for visual inspection of pharmaceutical tablets [J].Machine Vision and Applications, 2009,22(1) : 145-156.
  • 9张坤华,杨烜.应用聚类和分形实现复杂背景下的扩展目标分割[J].光学精密工程,2009,17(7):1665-1671. 被引量:11
  • 10ANIRBAN M, UJJWAL M. Unsupervised satel- lite image segmentation by combining SA based fuzzy clustering with support vector machine[C]. Proceedings of the Seventh International Confer- ence on Advances in Pattern Recognition, Kolk- ata, West Bengal, India, ICAPR, 2009.. 381- 384.

二级参考文献85

共引文献62

同被引文献133

引证文献13

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部