期刊文献+

对pSFLASH扰动公钥密码的一个实际攻击 被引量:2

A Practical Attack on the pSFLASH Public Key Cryptosystem
下载PDF
导出
摘要 通过对SFLASH的中心映射进行扰动,最近Wang等人提出了一个新的多变量公钥系统pSFLASH.pSFLASH的设计者认为,扰动后的中心映射可以破坏SFLASH公钥潜在的数学结构,从而抵抗针对SFLASH的差分代数攻击[2-3].然而对于以(T-1,U-1,β,γ)为私钥的任一pSFLASH实例,一定存在一个可逆仿射变换U,使它变成一个以(T-1,■1)为私钥的SFLASH实例,因此利用对SFLASH的差分代数攻击[2-3],在几秒钟的时间内可以实际地伪造出任意消息的合法的pSFLASH签名. Recently,a new multivariate public key cryptosystem named pSFLASH is proposed by Wang in 2010 by inserting a perturbation into the central map of the SFLASH cryptosystem.The designers of pSFLASH claim that the potential mathematical structure of the public key of SFLASH will be destroyed,if the central map is perturbed in such a way.Therefore,pSFLASH could resist the differential algebraic attack.This paper points out that,for every pSFLASH instance with private key(T-1,U-1,β,γ),there must exist a SFLASH instance with private key(T-1,■1),such that the pSFASH instance can be converted into that sFLASH instance.As a result,by applying the differential algebraic attack on SFLASH,we can practically forge a valid pSFLASH signature in seconds.
出处 《计算机学报》 EI CSCD 北大核心 2011年第7期1284-1290,共7页 Chinese Journal of Computers
基金 国家自然科学基金(61070172 10990011) 国家"九七三"重点基础研究发展规划项目基金(2007CB311201)资助
关键词 多变量公钥密码 SFLASH 线性化方程攻击 差分代数攻击 multivariate public key cryptosystem SFLASH linearization attack differential algebraic attack
  • 相关文献

参考文献1

二级参考文献16

  • 1Shor P W. Algorithms for quantum computation: Discrete log and factoring. In: Proceedings of the 35th Sym on Foundations of Computer Science, New York: IEEE Computer Society Press, 1994. 124-134.
  • 2Hoffstein J, Pipher J, Silverman J H. NTRU: a ring based public key cryptosystem. In: Proc. of ANTS III, LNC Berlin: Springer-Verlag, 1998. 267-288.
  • 3Okamoto T, Tnaka K, Uchiyama S. Quantum public-key cryptosystems. In: CRYPTO2000, LNCS 1880. Springer-Verlag, 2000. 147-165.
  • 4Ding J. Multivariate Public Key Cryptosystems. Berlin: Springer-Verlag, 2006. 11-190.
  • 5Garey M, Johnson D. Computers and Intractability, A Guide to the Theory of NP-Completeness. New York: F1 1979.
  • 6Patarin J, Courtois N, Goubin L. FLASH, a fast multivariate signature algorithm. In: CT-RSA 2001, LNC Berlin: Springer-Verlag, 2001. 297-307.
  • 7Akkar M, Courtois N, Duteuil R, et al. A fast and secure implementation of SFLASH. In: PKC2003, LNCS, Vo Berlin: Springer, 2003. 267-278.
  • 8Dubois V, Fouque P A, Shamir A, et al. Practical cryptanalysis of SFLASH. In: Crypto2007, LNCS 4622. Springer-Verlag, 2007. 1-12.
  • 9Matsumoto T, Imai H. Public quadratic polynomial-tuples for efficient signature verification and message enci In: Advances in Eurocryp1988, LNCS 330. Berlin: Springer, 1988. 419-453.
  • 10Patarin J. Hidden field equations (HFE) and isomorphisms of polynomials (IP): two new families of asymmett rithms. In: Eurocrypt1996, LNCS 1070. Berlin: Springer, 1996. 33-48.

共引文献11

同被引文献2

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部