期刊文献+

银行操作风险度量的非参数估计方法——基于最大熵原理 被引量:1

Nonparametric Estimation of Bank Operational Risk——Based on Maximum Entropy Principle
下载PDF
导出
摘要 根据新巴塞尔资本协议的要求,银行应该为操作风险分配相应的资本金来御其风险。损失分布法是最常用的操作风险度量模型,但损失分布的参数估计方法受主观影响较大,容易造成结果的偏差和不确定性。基于此提出了基于最大熵原理的非参数估计方法来估计损失分布中损失程度分布。该方法直接通过求解数学规划问题得到概率分布,所得分布拟合程度更高并且结果客观;基于该方法计算了我国商业银行业的操作风险的大小和资本金数量,最后采用国际商业银行的操作风险损失数据对模型进了压力测试。实证结果显示基于最大熵的方法较好地拟合了操作风险损失分布,同时具有良好的鲁棒性和敏感性。 The New Basel Capital Accord requires banks to allocate risk capital to withstand operational risk.Loss Distribution Approach(LDA),which is a frequency/severity approach,is widely used to quantify operational risk.While parameters estimation of distribution may caused uncertainty or biased results,which are influenced by the subjective hypothesis of probability distribution.In order to acquire high degree of distribution fit and objective results,a new nonparametric estimation method was proposed for loss severity distribution based maximum entropy(maxent)principle through solving mathematical programming problems.This paper empirically analyzes operational risk capital with operational risk data of Chinese commercial banks,in which Poisson and maxent distribution are respectively used to fit frequency and severity data.Finally,the validation of the model is tested by stress test approach.The empirical results reveal the model not only is consistent with data characteristics but also fits operational risk loss data,meanwhile it is robust and sensitive to loss data.
出处 《工业技术经济》 CSSCI 2011年第7期115-122,共8页 Journal of Industrial Technological Economics
基金 国家自然科学基金面上项目(项目编号:70701033 71071148)资助
关键词 最大熵 操作风险 损失分布法 压力测试 maximum entropy method operational risk loss distribution approach stress testing
  • 相关文献

参考文献22

  • 1Basel Committee on Banking Supervision. International Convergence of Capital Measurement and Capital Standards. A Revised Framework- Comprehensive Version. Bank for Interna- lional Settlements, Basel, Switzerland, 2006.
  • 2Chapelle A, Crama Y, Huebner G and Peters J P. Practical methods for measuring and managing operational risk in the firmneial sector: A clinical study [J]. Journal of Banking & Finance, 2008, 32 (6): 1049-1061.
  • 3周好文,杨旭,聂磊.银行操作风险度量的实证分析[J].统计研究,2006,23(6):47-51. 被引量:11
  • 4Matthias Degeul, Paul Embrechls, Dominik D. Lam- bfigger. The Quantitative Modeling of Operational Risk: Between g- and- h and EVT [J]. ASTIN Bulletin, 2007, 37 (2): 265 - 291.
  • 5Bank of Japan. The Effect of the Choice of the LossSeverity Distribution and the Parameter Estimation Method on Op- erational Risk Measurement, reports and research paper, 2007.
  • 6Boeker Klaus. Operational Risk: Analytical Results When High Severity losess Fnllow a Generalized Pareto Distribution [J]. Risk of London, 21106, 8 (4): 117-120.
  • 7V Chavez Demoulin, P Embrechts, J Neslehova. Quantitative medels for operational risk: Extremes, dependence aggregation [J] Journal risk:Extemes, 2006, 30 (10): 2635 - 2658.
  • 8刘睿,詹原瑞,刘家鹏.基于贝叶斯MCMC的POT模型——低频高损的操作风险度量[J].管理科学,2007,20(3):76-83. 被引量:21
  • 9司马则茜,蔡晨,李建平.度量银行操作风险的POT幂律模型及其应用[J].中国管理科学,2009,17(1):36-41. 被引量:16
  • 10Wu X M. Calculation of maximum entropy densities with applicaon to income dlstrlbution [ J]. Journal d Economet- des, 2003, 115 (2): 347-354.

二级参考文献100

共引文献136

同被引文献5

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部