期刊文献+

基于基因限制信息的特征权值优化研究

Study of Feature Weight Optimization Based on Gene Restrictive Information
下载PDF
导出
摘要 针对自组织映射算法在衡量神经元与输入数据之间相似度时将所有特征视为权值相同,导致无法在基因半监督聚类中利用限制信息的某些重要特征的不足,提出了一种新的基于基因限制信息的特征权值优化算法。算法根据限制信息优化特征的权值,将那些能够有效区分限制信息的特征赋予较大的权值。为防止在特征权值的优化中引入偏置或对非限制数据划分能力减弱,算法利用非限制信息调整特征权值。实验结果表明,算法提高了基因聚类的准确率。 SOM sets the same weight to all features and it is impossible to take advantage of some essential feature in gene semi-supervised clustering. A novel feature weight optimization algorithm based on restrictive information is proposed. The restrictive information is used to optimize the feature's weight and give more attention to the data that effectively distin guish restrictive information. To avoid the bias or the weak ability to cluster nonrestrictive data, the non-restrictive data is also used to adjust the feature's weight. Experiment results show the accuracy of gene clustering is improved.
出处 《计算机与数字工程》 2011年第7期17-19,共3页 Computer & Digital Engineering
关键词 限制信息 半监督聚类 自组织映射 基因聚类 restrictive information semi-supervised clustering self organizing map gene clustering
  • 相关文献

参考文献10

二级参考文献66

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部