期刊文献+

物流配送网络的无标度网络特征研究 被引量:11

Analysis of Characteristics of Logistics Scale-Free Distribution Network
下载PDF
导出
摘要 首先分析了物流配送网络逐渐由简单到复杂的演变过程,然后以一类典型第三方物流企业为主体的物流配送网络为基础,以实际运营的物流配送网络为研究对象,通过大量调研记录网络中各个节点之间的关系,利用MATLAB程序实现物流配送网络节点度分布的计算,最后通过计算结果分析发现节点度分布的幂律指数符合无标度网络的特征,以物流配送网络无标度网络的特征为基础,为建立物流配送网络中的配送节点和客户节点的生成模型提供理论基础。 The paper analyzes the process of the simple-to-complex evolution of logistics distribution networks. Using a typical logistics distribution network operated by a third-party logistics company as the foundation of the study and its logistics distribution network practical operation as the study object, the paper records the node relationship through a large number of site surveys, and calculates the node degree distribution of the logistics distribution network using MATLAB Program. The result of the calculation proves thai power law index of the node degree distribution is in compliance with the characteristics of the scale-free network, which provides the theoretical basis for establishing a generative model of the distribution nodes and client nodes in the network.
出处 《物流技术》 2011年第7期97-100,共4页 Logistics Technology
关键词 物流配送网络 无标度网络 节点度分布 logistics distribution network scale-free network node degree distribution
  • 相关文献

参考文献6

  • 1Barabasi A L,Albert R. Emergence of scaling in random networks[J]. Sci- ence, 1999, 286: 509-5J2.
  • 2Barabasi A L,Albert R, Jeong H. Mean-field theory for scale-free random networks[J]. Physica A, 1999, 272: 173-187.
  • 3Barabasi A L, Albert R, Jeong H, et al.Power-law distribution of theworld wideweb[J]. Science, 2000, 287:2 115.
  • 4Albert R, Barabasi A L. Statistical mechanics of complex networks [Jl- Reviews of Modern Physics, 2002, 74(1): 47-98.
  • 5那日萨,张书超,穆青.一类变幂率的无标度网络模型构建和分析[J].大连理工大学学报,2010,50(5):811-815. 被引量:6
  • 6赵国智,王喜富,张仲义.煤炭物流网络的复杂性分析及优化方法研究[J].物流技术,2008,27(8):117-119. 被引量:17

二级参考文献15

  • 1章忠志,荣莉莉.BA网络的一个等价演化模型[J].系统工程,2005,23(2):1-5. 被引量:16
  • 2刘慧,李增扬,陆君安.局域演化的加权网络模型[J].复杂系统与复杂性科学,2006,3(1):36-43. 被引量:12
  • 3BARABASI A L, ALBERT R, JEONG H. Mean-field theory for scale-free random networks [J]. Physica A, 1999, 272(68) :173-187.
  • 4ALBERT R, BARABASI A L. Statistical mechanics of complex networks [J]. Reviews of Modern Physics, 2002, 74(1) :47-97.
  • 5DOROGOVTSEV S N, MENDES J F F. Evolution of networks [J]. Advances in Physics, 2002, 51(4) :1079-1187.
  • 6NEWMAN M E J. The structure and function of complex networks [J]. SIAM Review, 2003, 45(2) : 167-256.
  • 7KRAPIVSKY P L, REDNER S, LEYVRAZ F. Connectivity of growing random networks [J].Physical Review Letters, 2000, 85(21) : 4629-4632.
  • 8DOROGOVTSEV S N, MENDES J F F. Scaling behaviour of developing and decaying networks [J]. Europhysics Letters, 2000, 52(33) :33-39.
  • 9ALBERT R, BARABASI A L. Topology of evolving networks..local events and universality [J]. Physics Review Letters, 2000, 85(24) :5234-5237.
  • 10CHEN Fei, CHEN Zeng-qiang, WANG Xiu-feng, et al. The average path length of scale free networks [J]. Communications in Nonlinear Science and Numerical Simulation, 2008, 13(7) : 1405-1410.

共引文献21

同被引文献144

引证文献11

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部