期刊文献+

非兴奋型生物细胞内钙离子浓度振荡的数值仿真 被引量:2

Numerical simulations of calcium oscillations in non-excitable biological cells
下载PDF
导出
摘要 针对描述一类非兴奋型细胞,如肝细胞或上皮细胞内钙振荡的Marhl-Haberichter及其简化数学模型,数值仿真了在不同参数条件下,系统呈现的不同类型的复杂钙振荡模式。得到了非兴奋型生物细胞的四类钙振荡形式:点-点型周期簇振荡、点-环型周期簇振荡、点-环型双节律簇振荡及混沌簇振荡。应用快慢动力学分岔分析方法,研究了点-点型周期簇振荡产生的动力学性质。 Different types of calcium oscillations in non-excitable biological cells were simulated with variable parameters in Marhl-Haberichter and its simplified model. Four types of calcium oscillations were obtained as follows: regular bursting of point-point, regular bursting of point-cycle, two-fold bursting of point-cycle and chaotic bursting. Dynamic properties of regular bursting of point-point type were analyzed by the fast-slow dynamical theory.
作者 李远华
出处 《淮南师范学院学报》 2011年第3期1-3,共3页 Journal of Huainan Normal University
基金 淮南师范学院科研基金资助计划项目(2009LK01)
关键词 生物细胞 钙离子 簇振荡 分岔 biological cell calcium ions bursting bifurcation
  • 相关文献

参考文献1

二级参考文献10

  • 1Cuthbertson K S 1985 Nature 316 541
  • 2Woods N M 1986 Nature 319 600
  • 3Berridge M J Bootman M D and Lipp P 1998 Nature 395 645
  • 4Izhikevich E M 2000 Int. J. Bifur. Chaos 10 1171
  • 5Rinzel J 1985 Lecture Notes Math. (Berlin: Springer)
  • 6Marhl M Haberichter T and Brumen M 2000 Biosystems 57 75
  • 7Grubelnk V Larsen A Z Kummer U Olsen L F and Marhl M 2001 Biophys. Chem. 94 59
  • 8Perc M and Marhl M 2003 Chaos, Solitons Fractals 18 759
  • 9Zhang F Lu Q S and Duan L X 2007 Chin. Phys. Lett. 12 3344
  • 10Borghans G and Dupont A 1997 Biophys. Chem. 66 25

共引文献1

同被引文献18

  • 1高凤新,李亚平,李前树.细胞内钙离子体系中的双参数内信号随机共振[J].高等学校化学学报,2004,25(9):1727-1729. 被引量:4
  • 2杨卓琴,陆启韶.神经元Chay模型中不同类型的簇放电模式[J].中国科学(G辑),2007,37(4):440-450. 被引量:15
  • 3寿天德.神经生物学[M].北京:高等教育出版社,2006:340-343.
  • 4Perc M, Marhl M. Different types of bursting calcium oscillations in non-excitable cells [J]. Chaos, Solitons and Fractals, 2003,18(4) : 759-773.
  • 5王青云,石霞,陆启韶.神经元耦合系统的同步动力[M].北京:科学出版社,2008.
  • 6Zhang Feng, Lu Qishao, Su Jianzhong. Transition in complex calcium bursting induced by IP3 degradation[J]. Chaos, Solitons - Fractals, 2009,41 (5) : 2285- 2290.
  • 7BELYKH V. N. BELYKH I. V. COLDING J. M. etc. Homoclinic bifurcations leading to the emergence of bursting oscillations in cell models. Eur.Phvs. 2000. 3.pp. 205-219.
  • 8CHRISTOPHER P..F.Computational cell biology. Springer, 2002.
  • 9HINDMARSH J. L. ROSE R. M. A model of neuronal bursting using three coupled first order differential equations. Proc R Soc. London Ser. B., 1984, 221.pp.87-102.
  • 10IZHIKEVICH E. M. Mathematical foundations of neuroscience. Springer, 2010.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部