期刊文献+

单摆周期近似公式的数值优化 被引量:1

Approximate Simple Pendulum Period Formulae: Optimization in a Numerical Way
下载PDF
导出
摘要 运用MATLAB中的最小二乘曲线拟合方法,在[0,π/2]及[0,π]区间对现有单摆周期近似公式分别进行了数值修正,得到与原公式具有相同的形式但不同系数的修正公式。对原公式及修正后公式的方差和及相对误差进行了比较。结果表明,原近似公式的精确度得到了显著的改进。此外,作者发现,原公式及修正公式在[0,π/2]区间的近似程度要优于[0,π]区间,并且,在[0,π/2]区间具有较高精确度的公式在[0,π]区间未必同样精确,从而揭示出了这些公式近似程度对讨论区间的依赖性。 Approximate formulae of period of a simple pendulum with oscillation amplitude in and were optimized in a numerical way with the function of Lsqcurvefit in MATLAB.New formulae with the same forms as but different coefficients from the original ones were obtained correspondingly.The sums of squared difference and relative error of each original formula and its corresponding revised one with the exact value of the period of a simple pendulum were compared.The results show that every original formula has been remarkably improved.Furthermore,it is found that a formula(no matter it is an original one or a revised one) performs better inthan in.Besides,a formula that performs relatively better in is not necessarily better in,showing the dependence of the precision of a formula on the interval.
出处 《辽东学院学报(自然科学版)》 CAS 2011年第2期159-163,共5页 Journal of Eastern Liaoning University:Natural Science Edition
基金 辽宁省教育厅科研计划项目(2009A266)
关键词 单摆 周期 MATLAB 非线性曲线拟合 最小二乘法 simple pendulum period MATLAB nonlinear curve fitting least square method
  • 相关文献

参考文献14

  • 1BELENDEZ A, HERNANDEZ A, BELENDEZ T, et al. An improved ' heuristic' approximation for the period of a nonlinear pendulum: linear analysis of a nonlinear problem[J]. Int. J. Nolin. Sci. Numer. Simul,2007, 8 : 329 - 334.
  • 2AMORE P, VALDOVINOS M C, ORNELES G, et al. The nonlinear pendulum: formulae for the large amplitude period [J]. Rev. Mex. Fis,2007, E53:106-111.
  • 3CROMER A. Many oscillations of a rigid rod [J]. Am. J. Phys,1995, 63:112 - 121.
  • 4HITE G E. Approximations for the period of a simple pendulum [J]. Phys. Teach,2005, 43: 290- 292.
  • 5BELENDEZ A, ALVAREZ M L, HERNENDEZ A.Approximation for a large - angle simple pendulum period [J]. Eur. J. Phys,2009, 30:1.,25 -28.
  • 6GANLEY W P. Simple pendulum approximation [J].] Am. J, Phys. 1985, 53:73 -76.
  • 7PARWANI R R. An approximate expression for the large angle period of a simple pendulum [ J]. Eur. J. Phys, 2004, 25:37 -39.
  • 8KIDD R B, FOGG S L. A simple formula for the large - angle pendulum period [ J ]. Phys, Teach,2002, 40 : 81 - 83.
  • 9LIMA F M S, ARUM P. An accurate formula for the period of a simple pendulum Oscillating beyond the small angle regime [J]. Am. J. Phys,2006, 27:539-551.
  • 10MOLINA M I. Simple linearizations of the simplependulum for any amplitude [ J]. Phys. Teach, 1997, 35 : 489 - 490.

二级参考文献2

  • 1(美)科恩A 周民强等(译).数学手册[M].北京:工人出版社,1987.788.
  • 2同济大学应用数学系.高等数学(下册)[M].北京:高等教育出版社,1992.261.

共引文献37

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部