摘要
研究了高阶齐次线性微分方程f(k)+(Ak-1(z)epk-1(z)+Dk-1(z))f(k-1)+…+(A0(z)ep0(z)+D0(z))f=0解的增长性问题,其中pj(z)=ajzn+bj,1zn-1+…+bjn,,Aj(z),Dj(z)是有限级整函数。针对pj(z)中aj(j=0,1,…,k-1)的幅角主值不全相等的情形,得到了方程解的增长级的精确估计。
This paper investigates the properties of growth of solutions of higher order Linear Differential equations f(k)+(A^k-1(z)e^pk-1(z)+Dk-1(z))f(k-1)+L+(A0(z)e^po(z)+D0(z))f =0, in the pj(z)=aj zn+bj,1zn-1+bj,n,Aj(z) and Dj(z) were finite order entire function,obtains some precise estimates of the order of growth of the solutions when argument of pj(z)中aj(j=0,1,L,k-1) of pj(z) is not all equal.
出处
《山西大同大学学报(自然科学版)》
2011年第3期1-5,共5页
Journal of Shanxi Datong University(Natural Science Edition)
基金
贵州省科学技术基金资助项目[2010GZ43286]
贵州省教育厅科研基金资助项目[2007079]
关键词
线性微分方程
增长级
整函数
复振荡
linear differential equations
entire function
order of growth
complex oscilition