期刊文献+

一类高阶齐次线性微分方程解的复振荡

Complex Oscilition of the Solutions of a Type of Higher Order Linear Differential Equations
下载PDF
导出
摘要 研究了高阶齐次线性微分方程f(k)+(Ak-1(z)epk-1(z)+Dk-1(z))f(k-1)+…+(A0(z)ep0(z)+D0(z))f=0解的增长性问题,其中pj(z)=ajzn+bj,1zn-1+…+bjn,,Aj(z),Dj(z)是有限级整函数。针对pj(z)中aj(j=0,1,…,k-1)的幅角主值不全相等的情形,得到了方程解的增长级的精确估计。 This paper investigates the properties of growth of solutions of higher order Linear Differential equations f(k)+(A^k-1(z)e^pk-1(z)+Dk-1(z))f(k-1)+L+(A0(z)e^po(z)+D0(z))f =0, in the pj(z)=aj zn+bj,1zn-1+bj,n,Aj(z) and Dj(z) were finite order entire function,obtains some precise estimates of the order of growth of the solutions when argument of pj(z)中aj(j=0,1,L,k-1) of pj(z) is not all equal.
作者 金瑾
出处 《山西大同大学学报(自然科学版)》 2011年第3期1-5,共5页 Journal of Shanxi Datong University(Natural Science Edition)
基金 贵州省科学技术基金资助项目[2010GZ43286] 贵州省教育厅科研基金资助项目[2007079]
关键词 线性微分方程 增长级 整函数 复振荡 linear differential equations entire function order of growth complex oscilition
  • 相关文献

参考文献15

  • 1Chen zongxuan. On the growth of solutions of the differential equationf"+e~f '+Q(z)f=O[J]. Science in China, eries A, 2001, 22(9): 775 - 784.
  • 2Frei M. Uber die subnomalen losungen der differentialgleichung w "+e~w '+(Kconst)=O[J]. Comment Math Helv, 1962, 36(1): 1- 8.
  • 3Ozawa M. On a solution of w "+ew '+(az+b )w=0[J]. Kodai Math J, 1980, 10(3): 295 - 309.
  • 4Amemiya I, Ozawa M. Non-existence of finite order solution of w "+e-'w '+Q(z)w=O[J]. Hokkaido Math J, 1981, I0(1): 1 - 17.
  • 5Gundersen G. On the question of whetherf"+e~f '+Q (z)f=-O can admit a solution f#0 of finite orde [J]. Proc R S E, 1986, 102A (1): 9 - 17.
  • 6Langley J K. On complex oscillation and a problem of Ozawa[J]. Kodai Math J, 1986, 9:430 - 439.
  • 7Li Chunhong, Huang Xiaojun. The growth of solutions of a certain higher order differential equations[J]. Mathematica Acta Scientia, 2003, 23A(5): 613 - 618.
  • 8陈宗煊,孙光镐.ON THE GROWTH OF SOLUTIONS OF A CLASS OF HIGHER ORDER DIFFERENTIAL EQUATIONS[J].Acta Mathematica Scientia,2004,24(1):52-60. 被引量:28
  • 9Gundersen G. Estimates for the logarithmic derivative of a meromorphic fuynction plus similar estimates[J]. J London Math Soc, 1988, 37 (2): 88 - 104.
  • 10YANG Le. Value Distribution Theory and New Research[M]. Bei jing: Science Press, 1982.

二级参考文献31

  • 1Hayman W. Meromorphic Function. Oxford: Clarendon Press, 1964.
  • 2Yang Lo. Value Distribution Theory and New Research. Beijing: Science Press, 1982(in Chinese).
  • 3Yi Hongxun, Yang Chungchun. The Uniqueness Theory of Meromorphic Functions. Beijing: Science Press, 1995 (in Chinese).
  • 4Hille E. Ordinary Differential Equations in the Complex Domain. New York: Wiley, 1976.
  • 5Frei M. Uber die subnormalen losungen der differentialgleichung w″ + e^-Zw′ + (konst.)w = 0. Comment Math Helv, 1962, 36:1-8.
  • 6Ozawa M. On a solution of w″ + e^-Zw′ + (az + b)w = 0. Kodai Math J, 1980, 3: 295-309.
  • 7Gundersen G. On the question of whether f″+ e^-Zf′ + B(z)f = 0 can admit a solution f≠ 0 of finiteorder. Proc R S E, 1986, 102A: 9-17.
  • 8Langley J K. On complex oscillation and a problem of Ozawa. Kodai Math J, 1986, 9:430-439.
  • 9Amemiya I, Ozawa M. Non-existence of finite order solutions of w″+ e^-Zw′+ Q(z)w = 0. Hokkaido Math J, 1981, 10:1-17.
  • 10Chen Zongxuan. The growth of solutions of the differential equation f″ + e^-Zf′ + Q(z)f = 0. Science in China (Series A), 2001, 31:775-784 (in Chinese).

共引文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部