期刊文献+

关于F-可补子群的一个注记

A Note on F-supplemented Subgroup
下载PDF
导出
摘要 设G是一个有限群,F是一个群系,称群G的一个子群H在G中F-可补的,如果存在G的一个子群T,使得G=HT且(H∩T)HG/HG包含在G/HG的F-超中心ZF∞(G/HG),利用F-可补子群研究有限群的p-幂零性,推广和统一了一些已知的结果。 Let G be a finite group and F a formation of finite groups.A subgroup H of G is F-supplemented in G if there exists a subgroup T of G such that G=HT and(H∩T)HG/HG is contained in the F-hypercenter Z∞F(G/HG) of G/HG.In this paper,we use F-supplemented subgroups to study p-nilpotency of finite groups.A series of previously known results are unified and generalized.
出处 《石河子大学学报(自然科学版)》 CAS 2011年第3期381-383,共3页 Journal of Shihezi University(Natural Science)
基金 国家自然科学基金项目(11071229) 江苏高校自然科学基金项目(10KJD110004)
关键词 F-可补子群 P-幂零性 SYLOW子群 F-supplemented subgroup p-nilpotent Sylow subgroup
  • 相关文献

参考文献1

二级参考文献29

  • 1Wenbin Guo.On $${\mathcal{F}}$$ -supplemented subgroups of finite groups[J]. manuscripta mathematica . 2008 (2)
  • 2W. Guo,K. P. Shum,A. N. Skiba.X-quasinormal subgroups[J]. Siberian Mathematical Journal . 2007 (4)
  • 3Y. Li.G-covering systems of subgroups for the class of supersoluble groups[J]. Siberian Mathematical Journal . 2006 (3)
  • 4Wenbin Guo,K. P. Shum,Alexander Skiba.G-covering subgroup systems for the classes of supersoluble and nilpotent groups[J]. Israel Journal of Mathematics . 2003 (1)
  • 5A. Ballester-Bolinches,M. C. Pedraza-Aguilera.On minimal subgroups of finite groups[J]. Acta Mathematica Hungarica . 1996 (4)
  • 6Ayesha Shaalan.The influence of π-quasinormality of some subgroups on the structure of a finite group[J]. Acta Mathematica Hungarica . 1990 (3-4)
  • 7S. Srinivasan.Two sufficient conditions for supersolvability of finite groups[J]. Israel Journal of Mathematics . 1980 (3)
  • 8Prof. Joseph Buckley.Finite groups whose minimal subgroups are normal[J]. Mathematische Zeitschrift . 1970 (1)
  • 9Guo W B.The Theory of Class of Groups. . 2000
  • 10Ezzat Mohamed M.On weakly s-supplemented subgroups of finite groups. J Algebra, Number Theory Appl . 2009

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部