期刊文献+

支持向量机的进化多核设计 被引量:4

Evolutionary multiple kernels design for support vector machines
下载PDF
导出
摘要 为提高支持向量机分类精度,提出一种基于遗传程序设计的进化多核算法.算法中每个个体表示一个多核函数,并采用树形结构进行编码,增强了多核函数的非线性;初始种群由生长法产生,经过遗传操作后得到适合具体问题的进化多核函数.遗传程序设计的全局搜索性能使得算法设计不需要先验知识.与单核函数及其他多核函数的对比实验结果表明,进化多核有效提高了支持向量机分类性能. To boost the classification accuracy of support-vector-machines(SVM), we propose an algorithm with evolutionary multiple kernels(EMK), based on the genetic programming(GP). In this algorithm, each individual represents a multiple kernel function, and is encoded by the tree-structure for enhancing the non-linearity of the multiple kernel function. Grow method is applied to initialize the GP population, from which the EMK adapting to practical problems is obtained by genetic operations. No priori knowledge is required due to the global search of GP. Comparisons of experimental resuits of EMK with the single kernel function and other multiple kernel functions show that EMK effectively improves the classification performance of SVM.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2011年第6期793-798,共6页 Control Theory & Applications
关键词 进化多核 遗传程序设计 支持向量机 核函数 evolutionary multiple kernels genetic programming support vector machines kernel function
  • 相关文献

参考文献16

  • 1VAPNIK V. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995.
  • 2CHAPELLE O, VAPNIK V, BOUSQUET O, et al. Choosing multiple parameters for support vector machines[J]. Machine Learning, 2002, 46(1/3): 131 - 159.
  • 3ONG C S, SMOLA A J, WILLIAMSON R C. Hyperkemels[M]//Ad- vances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2003:478 - 485.
  • 4HUM Q, CHEN Y Q, KWOK J T Y. Building sparse multiple-kernel SVM classifiers[J]. IEEE Transactions on Neural Network, 2009, 20(5): 827 - 839.
  • 5LANCKRIET G, CRISTIANINI N, BARTLETT P, et al. Learning the kernel matrix with semidefinite programming[J]. Journal of Ma- chine Learning Research, 2004, 5(1): 27 - 72.
  • 6BACH F R, LANCKRIET G R G, JORDAN M I. Multiple kernel learning, conic duality and the smo algorithmiC]//Proceedings of the 21st International Conference on Machine Learning. Banff: ACM Press, 2004:6 - 13.
  • 7SONNENBURG S, RATSCH G, SCHaeFER C. A general and effi- cient multiple kernel learning algorithm[J). Advances in Neural In- formation Processing Systems, 2006, 18(1): 1273 - 1280.
  • 8SONNENBURG S, RATSCH G, SCH)/,FER C, et al. Large scale multiple kernel learning[J]. Journal of Machine Learning Research, 2006, 7(7): 1531 - 1565.
  • 9DIOSAN L, OLTEAN M, ROGOZAN A, et al. Improving SVM Per- formance Using a Linear Combination of Kernels[M]. Heidelberg: Springer, 2007.
  • 10CRAMMER K, KESHET J, SINGER Y. Kernel design using boost- ing[M]//Advances in Neural Information Processing Systems. Cam- bridge, MA: MIT Press, 2003.

共引文献2

同被引文献52

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部