期刊文献+

表情机器人的动态情绪调节过程研究 被引量:6

Dynamic regulation process of facial expression robot
下载PDF
导出
摘要 本文提出了一种基于概率有限状态机的表情机器人情绪表现模型,将其应用到实时动态调节的表情机器人面部表情上.为实现该模型,首先定义表情机器人的情绪状态空间,并通过调查获取不同情绪状态的刺激转移概率.结合Gross的情绪调节过程,抽象出情绪表现规则中的抑制特征因子和人机交互关系因子,并使用遗传算法对其进行优化,同时采用自适应变异概率算子和交叉算子对优化过程进行实时的调节,其参数性能得到了相应的提高对模型参数进行了量化研究及交互效果的仿真分析,并在所研制的23自由度表情机器人平台上进行了相关实验此外,对于实际交互效果,还进行了统计学的调查分析.结果表明,本模型能够摆脱单一的表情交流方式,得到符合当前交互环境的表情. This paper deals with the emotion state-space model and the implementation of robot facial expression based on the probabilistic finite-state machine for the dynamic emotion regulation. The emotion state space is defined and the stimulating transition probabilities of different emotion state are acquired. The inhibitory characteristic coefficient and the human machine relationship coefficient are merged with Grossian emotional regulation process. The corresponding performances of parameters are enhanced using the genetic algorithm optimization and the real-time regulation of self- adaptive mutation probabilistic operator and cross-over operator. The quantitative analysis of the model parameters is made. The results generated by the emotion expression model are verified using the 23-degree-of-freedom expression robot platform. Moreover, the interactive effects are analyzed by the statistical algorithm. It also shows that the emotion expression model can acquire online expressive results and get rid of the single expressive interaction mode comparing to traditional algorithms.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2011年第7期936-946,共11页 Control Theory & Applications
基金 机器人技术与系统国家重点实验室开放研究项目资助项目(SKLRS-2010-MS-05) 中央高校基本科研业务费专项资金资助项目(FRF-BR-09-023B)
关键词 动态情绪调节 情绪状态空间 遗传算法 抑制特征因子 人机交互关系因子 emotional state-space dynamic emotional regulation genetic algorithm inhibitory characteristic coefficient human machine relationship coefficient
  • 相关文献

参考文献23

  • 1DUFFY B R. Anthropomorphism and the social robot[J]. Interna- tional Journal of Robotics Research, 2003, 42(1): 179 - 190.
  • 2ANDERSON K, MCOWAN E A real-time automated system for the recognition of human facial expressions[J]. IEEE Transactions on System, Man, and Cybernetics, Part B, 2006, 36(1): 95 - 105.
  • 3PARKE F I. Parameterized models for facial animation[J]. IEEE Computer Graphicsand Applications, 1982, 2(9): 61 - 68.
  • 4ADAM C, GAUDOU B, HERZIG A, et al. OCC's emotions: a for- malization in a BDI logic[J]. IEEE Transactions on System, Man, and Cybernetics, Part A, 2008, 25(8): 117 - 129.
  • 5GEE F C, BROWNE W N, KAWAMURA K. Uncanny valley revis- ited[J]. IEEE Transactions on Robotic, 2005, 22(6): 768 - 787.
  • 6CYNTHIA BREAZEAL. Function meets style: insights from emo- tion theory applied to HRI[J]. IEEE Transactions on Systems, Man. and Cybernetics-Part C: Applications and Reviews, 2004, 34(2): 187 - 194.
  • 7BREAZEAL C, GRAY J, BERLIN M. An embodied cognition ap- proach to mind-reading skills for socially intelligent robots[J]. The International Journal of Robotics Research, 2009, 28(5): 655 - 680.
  • 8LEE H S, PARK I W, CHUNG M J. A linear affect-expression space model and conlrol points for mascot-type facial robots[J]. IEEE Transactions on Robotics, 2007, 23(5): 863 - 873.
  • 9SPENCER-SMITH J, WILD H, 1NNERS-KER A H, et al. Making faces: creating three-dimeasional parameterizcd models of facial ex- pression[J]. Behavior Research Methods, Instruments, Computers, 2001, 33{2): 115 - 123.
  • 10JAECKEL P, CAMPBELL N, MELHUISH C. Facial behavior mapping-from video footage to a robot head[J]. Robotics and Au- tonomous Systems, 2008, 56(2): 1042 - 1049.

同被引文献40

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部