期刊文献+

向量自回归模型Granger因果图的条件互信息辨识与应用 被引量:1

Identification and application about Granger causality graph of vector autoregressive model using conditional mutual information
下载PDF
导出
摘要 Granger因果性是衡量系统变量间动态关系的重要依据.传统的两变量Granger因果分析法容易产生伪因果关系,且不能刻画变量间的即时因果性.本文利用图模型方法研究时间序列变量间的Granger因果关系,建立了时间序列Granger因果图,提出了Granger因果图的条件互信息辨识方法,利用混沌理论中的关联积分估计条件互信息.统计量的显著性山置换检验确定.仿真结果证实了方法的有效性,并利用该方法研究了空气污染指标以及中国股市间的Granger因果关系. The Granger Causality is an important basis for measuring the dynamic relationships among system vari- ables. Traditional two-variable Granger causality analysis method is prone to inducing spurious causal relationship and can not portray the immediate causal relationship. This paper explores how to use graphical models method to analyze the Granger causal relations among components of multivariate time series. Granger causality graph of time series is presented. The structural identification of Granger causality graph is investigated based on the conditional mutual information. The conditional mutual information is estimated using the correlation integral from chaos theory. The significance of the tested statistics is determined with a permutation test. The validity of the proposed method is confirmed by simulations analysis. The Granger causal relationships of the air pollution index and the China's stock market are investigated using the proposed method.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2011年第7期979-986,共8页 Control Theory & Applications
基金 国家自然科学基金资助项目(60375003 10926197)
关键词 Granger因果图 多维时间序列 条件互信息 关联积分 置换检验 Granger causality graph multivariate time series conditional mutual information correlation integral permutation tests
  • 相关文献

参考文献17

  • 1GRANGER C. Investigating causal relations by econometric mod- els and cross-spectral methods[[J]. Econometrica, 1969, 37(3): 424 - 438.
  • 2KAMINSKI M, DING Z, TRUCCOLO W, et al. Evaluating causal relations in neural systems: Granger causality, directed transfer func- tion and statistical assessment of significance[J]. Biological Cyber- netics, 2001, 85(2): 145 - 157.
  • 3KONYA L. Exports and growth: Granger Causality analysis on OECD countries with a panel approach[J]. Economic Modelling, 2006, 23(6): 978 - 992.
  • 4NAGARAJAN R, UPRETI M. Comment on causality and pathway search in microarray time series experiment[J]. Bioinfonnatics, 2008, 24(7): 1029 - 1032.
  • 5郭水霞.频域格兰杰因果关系及其在信号处理中的应用[J].计算机工程与应用,2008,44(3):5-7. 被引量:3
  • 6MUKHOPADHYAY N, CHATtERJEE S. Causality and pathway search in microarray time series experiment[J]. Bioinformatics, 2007, 23(4): 442 - 449.
  • 7FIEUWS S, VERBEKE G, MOLENBERGHS G, Randon-effects models for multivariate repeated measures[J]. Statistical Methods in Medical Research, 2007, 16(5): 387 - 397.
  • 8DAHLHAUS R. Graphical interaction models for multivariate time series[J]. Metrika, 2000, 51(2): 157 - 172.
  • 9高伟,田铮.基于条件互信息的多维时间序列图模型[J].控制理论与应用,2008,25(2):257-260. 被引量:6
  • 10OXLEY L, REALE M, WILSON G. Constructing structural VAR models with conditional independence graphs[J]. Mathematics and Computers in Simulation, 2009, 79(9): 2910 - 2916.

二级参考文献23

  • 1白建辉,王庚辰.大气中的水汽对太阳紫外辐射消光的可能机制分析[J].大气科学,1995,19(3):380-384. 被引量:17
  • 2Fuller W A.Introduce to statistical time series[M].New York:John Wiley,1976.
  • 3Granger C W J.Investigation causal relations by econometric models and cross-spectral methods[J].Econometrica,1969,37:424-438.
  • 4郭水霞,陈松乔.运用偏相关因果分析推断神经网络的真实结构[J].计算机工程与应用,2007,43(25):25-27. 被引量:4
  • 5周秀骥,龙风山本地站秋季地面O3与气象条件初探,1996年,30页
  • 6唐孝炎,大气环境化学,1990年,85页
  • 7Xu Chengkenneth,经济导刊,2000年,11卷,79页
  • 8陆懋祖,高等时间序列经济计量学,1999年,278页
  • 9中国证券监督管理委员会,中国证券统计年报1995,1996年
  • 10DAHLHAUS R.Graphical interaction models for multivariate time series[J].Metrika,2000,51(2):157-172.

共引文献94

同被引文献10

  • 1Grange C. Investigating causal relations by econometric models and cross-spectral methods[J]. Economet-rica, 1969, 37(3): 424-438.
  • 2Puente-Ajovín M, Sanso-Navarro M. Granger causality between debt and growth: evidence from OECDcountries[J]. International Review of Economics & Finance, 2015, 35(1): 66-77.
  • 3Montalto A, Stramaglia S, Faes L, et al. Neural networks with non-uniform embedding and explicit valida-tion phase to assess Granger causality[J]. Neural Networks, 2015, 71(3): 159-171.
  • 4Dahlhaus R, Eichler M. Causality and graphical models in time series analysis[C]// In Highly StructuredStochastic Systems, Oxford: University Press, 2003: 115-137.
  • 5Eichler M. Granger causality and path diagrams for multivariate time series[J]. Journal of Econometrics,2007, 137(2): 334-353.
  • 6Eichler M. Graphical modelling of multivariate time series[J]. Probability Theory and Related Fields, 2012,153(2): 233-268.
  • 7Butte A J, Kohane I S. Mutual information relevance networks: functional genomic clustering using pairwiseentropy measurements[J]. Paci c Symposium on Biocomputing, 2000, 6(12): 418-429.
  • 8Daub C O, Steuer R, Selbig J, et al. Estimating mutual information using B-spline functions-an improvedsimilarity measure for analysing gene expression data[J]. BMC Bioinformatics, 2004, 5(12): 1-12.
  • 9Prichard D, Theiler J. Generalized redundancies for time series analysis[J]. Physica D, 1995, 84(3): 476-493.
  • 10Denker M, Keller G. On U-statistics and von-Mises statistics for weakly dependent processes[J]. ProbabilityTheory & Related Fields, 1983, 64(4): 505-522.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部