摘要
提出了自组织径向基函数网络(RBFN) 神经网络的结构和学习算法,从而提高了RBFN 神经网络的学习精度和效率。在此基础上,设计出了基于自组织RBFN 神经网络的电网预想事故分类器。用此预想事故分类器对IEEERTS6系统的一阶、二阶和三阶预想事故进行安全与不安全的分类。
The paper presents a structure and a learning algorithm of the self organized radial basis functions network(RBFN). The algorithm improves RBFN's learning precision and efficiency. A contingency classifier of power system is designed by using the algorithm. This classifier is used in classifying contingency of IEEE RTS 6 system into security and unsecurity, and it's effective is proved.
出处
《中国电机工程学报》
EI
CSCD
北大核心
1999年第12期61-64,共4页
Proceedings of the CSEE