期刊文献+

基于条件随机场的DDoS攻击检测方法 被引量:14

Detection Approach of DDoS Attacks Based on Conditional Random Fields
下载PDF
导出
摘要 近年来,基于机器学习算法的分布式拒绝服务(distributed denial-of-service,简称DDoS)攻击检测技术已取得了很大的进展,但仍存在一些不足:(1)不能充分利用蕴涵于标记和特征观测序列中的上下文信息;(2)对多特征的概率分布存在过强的假设.条件随机场模型具有融合利用上下文信息和多特征的能力,将其应用于DDoS检测,能够有效地弥补上述不足.提出了一种基于条件随机场的DDoS攻击检测方法:首先,定义流特征条件熵(traffic feature conditional entropy,简称TFCE)、行为轮廓偏离度(behavior profile deviate degree,简称BPDD)两组统计量,对TCPflood,UDP flood,ICMP flood这3类攻击的特点进行描述;然后以此为基础,使用条件随机场,通过对其有效训练,分别为3类攻击建立分类模型;最后,通过对模型的有效训练,应用模型推断来完成对DDoS攻击的检测.实验结果表明,该方法能够充分发挥条件随机场模型的优势,准确区分正常流量和攻击流量,与同类方法相比,具有更好的抗背景流量干扰的能力. In recent years, the detection technology based on machine learning algorithms for distributed denial- of-service (DDoS) attacks has made great progress. However, there are still some deficiencies, which are: (1) being unable to make full use of contextual information in both the label and observed features series; (2) making too strong assumptions on the probability distribution of multiple features. Featured with the strong capability in integrating and exploiting contextual information and multiple features, the conditional random fields (CRF) model can be applied to detect DDoS attacks for effectively overcoming the above mentioned problems. A detection approach based on CRF model is proposed in this paper. First, two group of statistics are defined, which include traffic feature conditional entropy (TFCE) and behavior profile deviate degree (BPDD), to depict the characteristics of three types DDoS attacks: TCP flood, UDP flood and ICMP flood. Then, the CRF is trained to build the classification model for the addressed three types of attacks respectively. Lastly, the trained CRF models are used to identify the attacks with model inference. The experimental results demonstrate that the proposed approach can sufficiently exploit the advantages of CRF. The proposed detection approach not only can distinguish between attack traffic and normal traffic accurately, but is also more robust to resist disturbance of background traffic than the similar approaches.
出处 《软件学报》 EI CSCD 北大核心 2011年第8期1897-1910,共14页 Journal of Software
基金 国家自然科学基金(61070198 60970034 60903040)
关键词 分布式拒绝服务 条件熵 行为轮廓 条件随机场 distributed denial-of-service conditional entropy behavior profile conditional random fields
  • 相关文献

参考文献4

二级参考文献42

  • 1孙钦东,张德运,孙朝晖,张晓.基于流连接密度的分布式拒绝服务攻击检测[J].西安交通大学学报,2004,38(10):1048-1052. 被引量:5
  • 2孙知信,唐益慰,程媛.基于改进CUSUM算法的路由器异常流量检测[J].软件学报,2005,16(12):2117-2123. 被引量:27
  • 3孙知信,唐益慰,张伟,宫婧,王汝传.基于特征聚类的路由器异常流量过滤算法[J].软件学报,2006,17(2):295-304. 被引量:15
  • 4Mukherjee B, Heberlein LT, Levitt KN. Network intrusion detection. IEEE Network; 1994,8(3):26-41.
  • 5Denning DE. An intrusion-detection model. IEEE Trans on Software Engineering 1987,13(2):222-232.
  • 6Ilgun K, Kemmerer RA, Porras PA. State transition analysis: A rule-based intrusion detection approach. IEEE Trans on Software Engineering, 1995,21(3):181-199.
  • 7Lee W, Stolfo S J, Chan Pk. Learning patterns from UNIX process execution traces for intrusion detection. In Proc of the AAAI97 Workshop on AI Methods in Fraud and Risk Management. Menlo Park AAAI Press, 1997. 50-56.
  • 8Helmer GG, Wong JSK, Honavar V, Miller L. Intelligent agents for intrusion detection. In Proc of the IEEE Information Technology Conf Syracuse: IEEE Computer Society Press, 1998.121- 124.
  • 9Forrest S, Hofmeyr SA, Somayaji A, Longstaff TA. A sense of self for UNIX processes. In: Proc of the 1996 IEEE Symp on Security and Privacy. Oakland: IEEE Computer Society Press, 1996. 120-128.
  • 10Warrender C, Forrest S, Pearlmutter B. Detecting intrusions using system calls:Alternative data models. In: Proc of the 1999 IEEE Symp on Security and Privacy. Oakland: IEEE Computer Society Press, 1999. 133-145.

共引文献90

同被引文献98

引证文献14

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部