期刊文献+

基于Harr小波的动态场景全频阴影绘制算法 被引量:1

All-Frequency Shadows Rendering Algorithm for Dynamic Scenes Based on Harr Wavelets
下载PDF
导出
摘要 针对现有的预计算辐射传递算法对三维场景限制严格、适合于低频光照环境等问题,提出了一种动态场景的全频阴影绘制算法.在预处理阶段使用球体对三维物体进行拟合,同时对光照函数和BRDF(bidirectional reflectance distribution function)函数进行Harr小波变换;在运行时阶段利用不同基函数的优势,在像素基空间进行多个球体可见性函数的快速合并,在小波基空间进行光照函数、BRDF函数和可见性函数的三乘积分,得到最终的光照值.使用CUDA(computed unified device architecture)实现了该算法,充分利用了图形硬件的最新功能.实验结果表明,阴影绘制质量有很大的提高,可以基本达到实时绘制. Current PRT (pre-computed radiance transfer) techniques are limited to having 3D static scene, or large low-frequency lights. In this paper, an all-frequency shadow rendering method for dynamic scenes is proposed. In the preprocessing phase, the blocking geometry is modeled as a set of spheres, according to complex 3D model. The lighting and BRDF (bidirectional reflectance distribution function) are projected onto the Harr wavelet basis. At runtime, with the advantage of different basis functions, the product of visibility vectors is computed for blocker spheres in the pixel basis, while the triple product integral of lighting, BRDF and visibility is computed in the Harr basis. CUDA (computed unified device architecture) is used to implement this method, which sufficiently utilizes the new features of GPU (graphics processing unit). Experiments show that the method greatly improves vision quality and satisfies real-time requirements.
出处 《软件学报》 EI CSCD 北大核心 2011年第8期1948-1959,共12页 Journal of Software
基金 国家自然科学基金(60873159) 国家高技术研究发展计划(863)(2006AA01Z333)
关键词 预计算辐射传递 Harr小波 三乘积分 CUDA(computed UNIFIED DEVICE architecture) pre-computed radiance transfer Harr wavelet triple product integral CUDA (computed unified device architecture)
  • 相关文献

参考文献14

  • 1Sloan PP, Kautz J, Snyder J. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. In: Proc. of the 29th Annual Conf. on Computer Graphics and Interactive Techniques. New York: ACM Press, 2002. 527-536. [doi: 10.1145/566570.566612].
  • 2Ng R, Ramamoorthi R, Hanrahan P. All-Frequency shadows using non-linear wavelet lighting approximation. In: Proc. of the ACM SIGGRAPH 2003 Papers. New York: ACM Press, 2003. 376-381. [doi: 10A 145/1201775.882280].
  • 3Zhou K, Hu YH, Lin S, Guo BN, Shum HY. Precomputed shadow fields for dynamic scenes. In: Marks J, ed. Proc. of the ACM SIGGRAPH 2005 Papers. New York: ACM Press, 2005.1196-1201. [doi: 10.1145/1186822.1073332].
  • 4Mei CH, Shi JY, Wu FL. Rendering with spherical radiance transport maps. In: Proc. of the Eurographics. 2004. 281-290. [doi: 10.1111/j. 1467-8659.2004.00759.x].
  • 5Ren Z, Wang R, Snyder J, Zhou K, Liu XG, Sun B, Sloan PP, Bao HJ, Peng QS, Guo BN. Real-Time soft shadows in dynamic scenes using spherical harmonic exponentiation. ACM Trans. on Graph, 2006,25(3):977-986. [doi: 10.1145/1179352.1141982].
  • 6http://developer.nvidia.com/object/cuda.html.
  • 7Ramamoorthi R, Hanrahan P. An efficient representation for irradiance environment maps. In: Proc. of the 28th Annual Conf. on Computer Graphics and Interactive Techniques. New York: ACM Press, 2001. 497-500. [doi: 10.1145/383259.383317].
  • 8Ng R, Ramamoorthi R, Hanrahan P. Triple product wavelet integrals for all-frequency relighting. In: Marks J, ed. Proc. of the ACM SI(3GRAPH 2004 Papers. New York: ACM Press, 2004.477-487. [doi: 10.1145/1186562.1015749].
  • 9Sun WF, Mukherjee A. Generalized wavelet product integral for rendering dynamic glossy objects. ACM Trans. on Graph, 2006, 25(3):955-966. [doi: 10.1145/1179352.1141980].
  • 10Sloan P, Luna B, Snyder J. Local, deformable precomputed radiance transfer. ACM Trans. on Graph, 2005,24(3):1216-1224. [doi: 10.1145/1186822.1073335].

同被引文献18

  • 1刘相滨,邹北骥,王胜春.一种新的完全欧氏距离变换算法[J].计算机工程与应用,2005,41(13):44-45. 被引量:13
  • 2陈景航,杨宜民.一种基于Harr小波的快速模板匹配算法[J].计算机工程,2005,31(22):167-168. 被引量:7
  • 3LoweD G.Objectrecognitionfromlocalscaleinvariantfeatures [C]//7th International Conference onComputerVision.September20-25,Corfu,Greece.IEEE,1999,2:1150.
  • 4LoweD G.Distinctiveimagefeaturesfromscaleinvariantfeaturepoints[J].IntJComputVision,2004,60:91.
  • 5KeY,Sukthankar R.PCASIFT:a more distinctiverepresentationforlocalimagedescriptors[C]//IEEEComputerSocietyConferenceonComputerVisionandPattern Recognition.June27-July 02,WashingtonDC,USA.IEEE,2004,2:506-513.
  • 6ViolaP,JonesM.Rapidobjectdetectionusingaboostedcascadeofsimplefeatures[C]//Proceedingsofthe2001IEEEComputerSocietyConferenceonComputerVision and Pattern Recognition.December08-14,Kauai,Hawaii.IEEE,2001,1:511-518.
  • 7BayH,EssA,TuytelaarsT.SURF:speededuprobustfeatures[J].Computer Vision & Image Understanding,2008,110(3):346.
  • 8ViolaP,Jones M J.Robustrealtimefacedetection[J].IntJComputVision,2004,57(2):137.
  • 9RubleeE,Rabaud V,Konolige K.ORB:anefficientalternativetoSIFTorSURF[C]//IEEEInternationalConferenceonComputerVision.Nov6-13,Barcelona.IEEE,2011:2564-2571.
  • 10方亦凯,程健,汪孔桥,卢汉清.基于快速尺度空间特征检测的手势识别方法[J].中国图象图形学报,2009,14(2):214-220. 被引量:4

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部