摘要
基于语音信号的时变特性,研究了神经网络语音识别的方法.把混沌特性引入到神经元,构造了一种新的多层混沌神经网络结构,同时推导了相应的学习算法.把这种混沌神经网络用于语音识别,并与常用的神经网络语音识别方法作了比较.实验结果表明,混沌神经网络方法的平均识别率要高于同等条件下常用神经网络方法的识别率.
Speech recognition using neural networks was investigated.Especially,chaotic dynamics was introduced to neurons,and a multilayer chaotic neural network(CNN) architecture was built.A learning algorithm was also derived to train weights of the network.We apply the CNN to speech recognition and compare the performance of the network with those of recurrent neural network and time delay neural network. The experimental results show that the CNN method outperforms the other neural network methods with respect to average recognition rate.
出处
《上海交通大学学报》
EI
CAS
CSCD
北大核心
1999年第12期1517-1520,共4页
Journal of Shanghai Jiaotong University
基金
国家自然科学基金
关键词
语音识别
神经网络
混沌神经网络
识别率
speech recognition
neural networks
chaotic neural network(CNN)