摘要
Monochromatic y-rays are thought to be the smoking gun signal for identifying dark matter annihilation. However, the flux of monochromatic y-rays is usually suppressed by virtual quantum effects since dark matter should be neutral and does not couple with y-rays directly. In this work, we study the detection strategy of the monochromatic y-rays in a future space-based detector. The flux of monochromatic y-rays between 50 GeV and several TeV is calculated by assuming the supersymmetric neutralino as a typical dark matter candidate. The detection both by focusing on the Galactic center and in a scan mode that detects y-rays from the whole Galactic halo are compared. The detector performance for the purpose of monochromatic y-ray detection, with different energy and angular resolution, field of view, and background rejection efficiencies, is carefully studied with both analytical and fast Monte-Carlo methods.
Monochromatic y-rays are thought to be the smoking gun signal for identifying dark matter annihilation. However, the flux of monochromatic y-rays is usually suppressed by virtual quantum effects since dark matter should be neutral and does not couple with y-rays directly. In this work, we study the detection strategy of the monochromatic y-rays in a future space-based detector. The flux of monochromatic y-rays between 50 GeV and several TeV is calculated by assuming the supersymmetric neutralino as a typical dark matter candidate. The detection both by focusing on the Galactic center and in a scan mode that detects y-rays from the whole Galactic halo are compared. The detector performance for the purpose of monochromatic y-ray detection, with different energy and angular resolution, field of view, and background rejection efficiencies, is carefully studied with both analytical and fast Monte-Carlo methods.
基金
Supported by Natural Science Foundation of China (10435070,10773011,10721140381,10099630)
China Ministry of Science and Technology (2007CB16101,2010CB833000)