期刊文献+

基于小波变换和图像最大熵的织物疵点检测 被引量:4

Fabric Defect Detection Based on Wavelet Transform and the Maximum Entropy of Images
下载PDF
导出
摘要 传统空间域疵点检测方法容易造成疵点多尺度信息的丢失。根据小波变换能有效地获取信号局部多分辨率特性,提出一种结合小波变换和图像最大熵原理的织物疵点检测方法。首先选取最优小波基对织物疵点图像进行分解,并对分解后的高频垂直及水平系数进行灰度值归一化;然后分别求出水平和垂直细节图像的最大熵及平均熵。通过比较判断出疵点类型,最后对平均熵大的细节图像进行最大熵分割,得到最终的疵点检测结果。仿真实验表明该方法对常见纬向和径向类织物疵点的检测是有效的。 Traditional defects detection method lead to information missing on muilt-scale. Based on wavelet transform can obtain local multi-resolution feature effectly, a new method of fabric defects detection combined wavelet transform with image maximum entropy is proposed. Firstly, with the optimal wavelet bases, the fabric defect images are decomposed, then to normalize gray value of the details image, the maximum and average entropy of the details image are fround. Through to compare the size and determine the type of defect, the details image are segmented with larger average entropy based on the maximum entropy, finally the test results are got. Simulation results show that this method is effective to detect common fabric defects.
作者 卢亮 赵静
出处 《科学技术与工程》 2011年第22期5446-5450,共5页 Science Technology and Engineering
关键词 小波变换 多分辨率 信息熵 疵点检测 wavelet transform multi-resolution information entropy defect detection
  • 相关文献

参考文献9

  • 1Kumar A. Computer-vision-based fabric defect detection: a survey. IEEE Transations on Industrial Electronics. 2008 ;55( 1 ) :348--363.
  • 2Jeong S H, Choi H T, Kim S R. Detecting fabric defects with com- puter vision and fuzzy rule generation, part I: defect classification by image processing. Textile Research Journal,2001 ;71 (6) :518--526.
  • 3Ngan H Y T, Pang G K H, Yung N H C. Performance evaluation for motif - based patterned texture defect detection. IEEE Transactions on Automation Science And Engineerinz. 2010:7 (1) :58--72.
  • 4沈建强,耿兆丰,邹轩.基于小波变换的织物纹理方向检测方法[J].计算机工程,2007,33(6):182-184. 被引量:13
  • 5Han Y F, Shi P F. An adaptive level-selecting wavelet transform for texture defect detection. Image and Vision Computing , 2007 ; 25 : 1239--1248.
  • 6Wong A K C, Sahoo P K. A graylevel threshold selection method based on maximum entropy principle. IEEE Transactions on Sys- tems, Man, and Cybernetics, 1989;19 (4) : 866--871.
  • 7程正兴.小波分析与应用实例.西安:西安交通大学出版社,2007.
  • 8梁忠伟,叶邦彦,徐兰英,彭锐涛.基于小波系数矩阵二阶矩和多尺度小波分析的图像融合算法(英文)[J].科学技术与工程,2008,8(5):1188-1196. 被引量:1
  • 9Hunsop H, Schonfeld D. Maximum-entropy expecta tion-maximization algorithm for Image reconstruction and sensor field estimation. IEEE Transaction on Image Processing,2008 ;17(6) :897-907.

二级参考文献7

共引文献12

同被引文献36

  • 1袁端磊,路立平,宋寅卯.织物疵点自动检测技术的研究进展[J].郑州轻工业学院学报(自然科学版),2005,20(3):69-73. 被引量:10
  • 2王惠明,史萍.图像纹理特征的提取方法[J].中国传媒大学学报(自然科学版),2006,13(1):49-52. 被引量:77
  • 3沈建强,耿兆丰,邹轩.基于小波变换的织物纹理方向检测方法[J].计算机工程,2007,33(6):182-184. 被引量:13
  • 4程正兴.小波分析与应用实例[M].西安:西安交通大学出版社,2007.
  • 5祝双武,郝重阳.基于离散小波变换的织物疵点检测方法[J].计算机工程与应用,2007,43(25):111-113. 被引量:8
  • 6BISSI L, BARUFFA G, PLACIDI P, et al. Patch based yam defect detection using Gabor filters [C]. I2MIC, 2012 IEEE International, 2012: 240-244.
  • 7PRIYA S, KUMAR T A, PAUL D V. A novel approach to fabric defect detection using digital image processing [C].ICSCCN, 2011: 228-232.
  • 8Ding S, Liu Z, Li C. AdaBoost learning for fabric defect detection based on HOG and SVM [C]. International Conference on Multimedia Technology, 2011:2903-2906.
  • 9Guan S, Yuan J, Ma K. Fabric defect detection based on wavelet reconstruction[C]. ICMT 2011, 2011:3520-3523.
  • 10Zhang L, He Xh, Zhang Hb. A fabric defects detection method using SAR imaging [C]. 2010 6th International Conference on WiCOM, 2010:1-4.

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部