摘要
同步定位与地图构建(SLAM)是移动机器人实现真正自主的关键,无迹卡尔曼滤波(UKF)由于直接利用系统非线性模型而在SLAM问题中得到广泛的应用。基于平方根滤波可以确保协方差矩阵的非负定的思想,将平方根UKF应用到SLAM问题中,确保了SLAM算法的稳定性,并得到了较高的估计精度。仿真结果表明,该算法是有效的。
Simultaneous Localization and Mapping(SLAM) is concerned to be the key point to realize the real autonomy of mobile robot.Unscented Kalman Filter(UKF) is widely applied in SLAM problem because of its directly using of nonlinear model.Concerning that square root filter can ensure non-negative definite of the covariance matrix.This article introduces square root unscented Kalman filter into SLAM problem and ensures its stability.This algorithm also gains a more accurate estimation compared to UKF based SLAM.Simulation results show that this algorithm is effective.
出处
《计算机工程与应用》
CSCD
北大核心
2011年第22期209-212,共4页
Computer Engineering and Applications
基金
国家自然科学基金No.60974039
中国科学院数学机械化重点实验室开放课题资助
山东省东营市科技攻关项目资助~~