期刊文献+

基于平方根UKF的SLAM算法 被引量:2

Square root Unscented Kalman Filter based SLAM
下载PDF
导出
摘要 同步定位与地图构建(SLAM)是移动机器人实现真正自主的关键,无迹卡尔曼滤波(UKF)由于直接利用系统非线性模型而在SLAM问题中得到广泛的应用。基于平方根滤波可以确保协方差矩阵的非负定的思想,将平方根UKF应用到SLAM问题中,确保了SLAM算法的稳定性,并得到了较高的估计精度。仿真结果表明,该算法是有效的。 Simultaneous Localization and Mapping(SLAM) is concerned to be the key point to realize the real autonomy of mobile robot.Unscented Kalman Filter(UKF) is widely applied in SLAM problem because of its directly using of nonlinear model.Concerning that square root filter can ensure non-negative definite of the covariance matrix.This article introduces square root unscented Kalman filter into SLAM problem and ensures its stability.This algorithm also gains a more accurate estimation compared to UKF based SLAM.Simulation results show that this algorithm is effective.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第22期209-212,共4页 Computer Engineering and Applications
基金 国家自然科学基金No.60974039 中国科学院数学机械化重点实验室开放课题资助 山东省东营市科技攻关项目资助~~
关键词 同步定位与地图构建 无迹卡尔曼滤波 移动机器人 Simultaneous Localization and Mapping Unscented Kalman filter mobile robot
  • 相关文献

参考文献12

  • 1Nebot E.Simultaneous localization and mapping 2002 summer school[EB/OL].(2OO2).http://acfr.usyd.edu.au/home pages/academ- ic/enebot/.
  • 2陈卫东,张飞.移动机器人的同步自定位与地图创建研究进展[J].控制理论与应用,2005,22(3):455-460. 被引量:60
  • 3Dissanayake M W M G, Newman P, Clark S, et al.A solution to the simultaneous localisation and map building(SLAM) prob- lem[D].The University of Sydney,2006.
  • 4Williams S B.Efficient solutions to autonomous mapping and navigation problems[D].The University of Sydney,2001.
  • 5Wan E A, van der Merwe R.The Unscented Kalman Filter for nonlinear estimation[C]//Proeeedings of IEEE Symposium, 2000: 152-158.
  • 6潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:230
  • 7Montemerlo M, Thnm S, Koller D, et aI.FastSLAM: a factored solution to the simultaneous localization and mapping problem[C]// Proc of the National Conference on Artifical Intelligence, AAAI, Edmonton, Canada, 2002: 593-598.
  • 8张树春,胡广大.平方根滤波及其在目标跟踪方面的应用[J].哈尔滨工业大学学报,2008,40(5):700-704. 被引量:10
  • 9van der Merwe R, Wan E A.The square-root unscented Kalman filter for state and parameter-estimation[M].Piseataway, NJ, USA: [s.n.], 2001.
  • 10冯道旺,李腾,黄知涛.平方根二阶EKF及其在目标运动分析中的应用[J].系统工程与电子技术,2009,31(9):2101-2105. 被引量:6

二级参考文献142

  • 1魏星,万建伟,皇甫堪.基于粒子滤波的单站无源定位跟踪新算法研究[J].通信学报,2005,26(12):81-85. 被引量:6
  • 2周亚强,曹延伟,冯道旺,皇甫堪.基于视在加速度与角速度信息的单站无源定位原理与目标跟踪算法研究[J].电子学报,2005,33(12):2120-2124. 被引量:16
  • 3张树春,胡广大,刘思华.关于UKF方法的新探索及其在目标跟踪方面的应用[J].控制理论与应用,2006,23(4):569-574. 被引量:7
  • 4Bell B M, Cathey F W. The iterated Kalman filter update as a Gauss Newton Method[J]. IEEE Trans. on Automatic Control, 1993,38 (2) : 294 - 297.
  • 5Aidala V J, Hammel S E. Utilization of modified polar coordinates for bearing only tracking[J]. IEEE Trans. on Automatic Control, 1983,28(3) : 283 - 294.
  • 6Pachter M, Chandler P R. Universal linearization concept for extended Kalman filters [J]. IEEE Trans. on Aerospace and Electronic Systems, 1993,29(3) : 946 - 961.
  • 7Galkowski P J, Islam M. An alternative derivation of modified gain function of Song and Speyer [J]. IEEE Trans. on Automatic Control, 1991,36(11) : 1322 - 1326.
  • 8Guerei J R, Goetz R, Dimodiea J. A method for improving extended Kalman filter performance for angle only passive ranging [J]. IEEE Trans. on Aerospace and Electronic Systems, 1994, 30(4) :1090- 1093.
  • 9Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation[J]. Proc. of the IEEE, 2004,92 (3) : 401 - 422.
  • 10Liu shunlan, Zhang yuan. The performance of single observer passive location using bearing only with the UKF[C],//Proc. of 6th International Conference on ITS Telecommunication, 2006 : 230 -232.

共引文献312

同被引文献21

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部