期刊文献+

冷喷涂粒子性状及基板最佳位置对冲击速度影响(英文) 被引量:3

Effect of cold spray particle conditions and optimal standoff distance on impact velocity
下载PDF
导出
摘要 冷喷涂中,粒子撞击基板时的速度对涂层形成起到至关重要的作用,而适当的喷涂距离可以使喷涂粒子获得较高的速度.利用商用CFD软件Fluent模拟了喷嘴外超音速流场的分布情况,分析了粒子自身条件对冲击速度的影响,同时提出了确定粒子与基板最佳距离的方法.分析发现,小尺寸、低密度以及不规则形状的粒子容易受到喷嘴外产生的膨胀波、斜激波和基板前的弓形激波影响.随着能量的耗散或当粒子穿过弓形激波时,这些粒子的速度明显下降.另外,在基板与喷嘴之间存在一个最佳距离,它的确定需要两个必要条件:一是基板处的气流必须保持较低的速度,从而使弓形激波的强度相对较弱;二是粒子须经膨胀波加速2次,即弓形激波前具有2个膨胀波,以确保气体可充分利用膨胀波的加速. The impact velocity of particles plays an important role in coating formation of cold spray.A proper standoff distance from the nozzle exit to the substrate surface can ensure sprayed particles to achieve relatively high impact velocities.Numerical simulations were conducted by using a CFD software,Fluent,to predict the supersonic flow field outside the nozzle.Based on the simulation results,the effect of particle conditions on impact velocity is studied and also the way to determine the optimal standoff distance is proposed.It is found that particles with small size,low density or irregular shape can be significantly affected by the dilatational waves,oblique shock waves and bow shock waves.With the energy dissipation or passing through the bow shock waves,these particles are decelerated sharply.Moreover,there exists an optimal standoff distance for different conditions.The determination of the optimal standoff distance requires two essential considerations: One is that the substrate must be located at the place where the carrier-gas velocity is relatively low to weaken the strength of the bow shock waves;the other is that particles should be accelerated twice by dilatational waves before entering the bow shock waves,which means there must be two groups of dilatational waves in front of the bow shock waves.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2011年第4期498-504,共7页 Journal of Dalian University of Technology
基金 "973"National Basic Research Program of China(Grant No.2009CB724303) National Natural Science Foundation of China(Grant No.50476075) Chinese Ministry of Education's Academic Award for Outstanding Doctoral Student~~
关键词 冷喷涂 数值模拟 弓形激波 基板最佳距离 cold spray numerical simulation bow shock waves optimal standoff distance
  • 相关文献

参考文献17

  • 1ALKIMOV A P, KOSAREV V F, PAPYRIN A N. A method of cold gas-dynamic deposition [ J ]. Doklady Akademii Nauk SSSR, 1990, 318 (5) : 1062- 1065.
  • 2DYKHUIZEN R C, SMITH M F. Gas dynamic principles of cold spray [J]. Journal of Thermal Spray Technology, 1998, 7(2) :205-212.
  • 3ASSADI H, GARTNER F, STOLTENHOFF T, et al. Bonding mechanism in cold gas spraying [J ]. Aeta Materialia, 2003, 51(15) :4379-4394.
  • 4GILMORE D L, DYKHUIZEN R C, NEISER R A, et al. Particle velocity and deposition efficiency in the cold spray process [ J ]. Journal of Thermal Spray Technology, 1999, 8(4) : 576-582.
  • 5PAPYRIN A. Cold spray technology [J]. Advanced Materials and Processes, 2001, 159(9) :49-51.
  • 6KARTHIKEYAN J. Cold spray technology [J ]. Advanced Materials and Processes, 2005, 163(3):33- 35.
  • 7STEENKISTE T V, SMITH J, TEETS R. Aluminum coatings via kinetic spray with relatively large powder particles [ J ]. Surface and Coatings Technology, 2002, 154 (2-3) :237-252.
  • 8LI C J, LI W Y. Deposition characteristics of titanium coating in cold spraying [J ]. Surface and Coatings Technology, 2003, 167(2-3) :278-283.
  • 9KIM H J, LEEC H, HWANGS Y. Fabrication of WC-Co coatings by cold spray deposition [J]. Surface and Coatings Technology, 2005, 191 (2-3):335-340.
  • 10LIWY, LICJ, WANGY Y, etal. Effect of Cu particle parameters on its impacting behavior in cold spraying [ J ]. Aeta Metallurgiea Siniea, 2005, 41(3) :282-286 (in Chinese).

二级参考文献11

  • 1[1]Alkimov A P, Kosarev V F, Papyrin A N. Method of cold gas-dynamic deposition [J]. Dokl Akad Nauk SSSR, 1990, 315(5): 1062 - 1065.
  • 2[2]Gilmore D L, Dykhuizen R C, Neiser R A, et al. Particle velocity and deposition efficiency in the cold spray process [J]. Journal of Thermal Spray Technology,1999, 8(4): 576-582.
  • 3[3]Jodoin B. Cold spray nozzle Mach number limitation[J]. Journal of Thermal Spray Technology, 2002, 11 (4): 496 - 507.
  • 4[4]Dykhuizen R C, Smith M F. Gas dynamic principles of cold spray [J]. Journal of ThermalSpray Technology,1998, 7(2): 205-212.
  • 5[5]Grujicic M, Zhao C L, Tong C, et al. Analysis of the impact velocity of powder particles in the cold-gas dynamic-spray process [J]. Materials Science and Engineering A, 2004, 368(1 - 2): 222 - 230.
  • 6[6]Stoltenhoff T, Kreye H, Richter H J. An analysis of the cold spray process and its coatings [J]. Journal of Thermal Spray Technology, 2002, 11(4): 542 - 550.
  • 7[7]Steenkiste Van T H, Smith J R, Teets R E, et al. Kinetic spray coatings [J]. Surface and Coatings Technology, 1999, 111(1): 62-71.
  • 8[8]Alkhimov A P, Kosarev V F, Klinkov S V. The features of cold spray nozzle design [J]. Journal of Thermal Spray Technology, 2001, 10(3): 375 - 381.
  • 9[9]Li C J, Li W Y. Deposition characteristics of titanium coating in cold spraying [J]. Surface and Coatings Technology, 2003, 167(2 - 3): 278 - 283.
  • 10[10]FLUENT Inc. FLUENT manual. 1999.

共引文献3

同被引文献14

  • 1苏贤涌,周香林,崔华,张济山.冷喷涂技术的研究进展[J].表面技术,2007,36(5):71-74. 被引量:21
  • 2周香林,张济山,巫湘坤.先进冷喷涂技术与应用[M].北京:机械工业出版社,2011:2-10.
  • 3Jen T C, Li L J, Cui W Z, et al. Numerical investigations on cold gas dynamic spray process with nano-and microsize particles [J]. International Journal of Heat and Mass Transfer, 2005,48(21122): 4384-4396.
  • 4Jen T C, Pan L M, Li L J, et al. The acceleration of charged nano-particles in gas stream of supersonic De-Lavel-type nozzle coupled with static electric field [J]. Applied Thermal Engineering ,2007 ,27(17118) :2877-2885.
  • 5Takana H, Ogawa K, Shoji T, et al. Computational simulation of cold spray process assisted by electrostatic force [J]. Powder Technology ,2008,185(2): 116-123.
  • 6Takana H, Ogawa K, Shoji T, et al. Computational simulation on performance enhancement of cold gas dynamic spray processes with electrostatic assist [J]. Journal of Fluids Engineering, 2008 , 130(8) : 08170 1.1-08170 1.7.
  • 7Assadi H, Gartner F, Stoltenhoff T, et al. Bonding mechanism in cold gas spraying [J]. Acta. Materialia,2003,51 (15): 4379-4394.
  • 8Pattison J, Celotto S, Khan A, et al. Standoff distance and bow shock phenomena in the Cold Spray process [J]. Surface and Coatings Technology,2008,202(8): 1443-1454.
  • 9Chun D M, Choi J 0, Lee C S, et al. Effect of stand-off distance for cold gas spraying of fine ceramic particles ?5fLm) under low vacuum and room temperature using nano-particle deposition system (NPDS) [J]. Surface and Coatings Technology ,2012,206(8):2125-2132.
  • 10李文亚.冷喷涂粒子碰撞行为三维有限元热力耦合分析[J].中国表面工程,2009,22(3):31-37. 被引量:5

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部