期刊文献+

聚苯胺/ZnO复合材料纳米线的制备及界面特性研究

Preparation of ZnO/PANi Composite Nanowire and Their Interactions on Interface between ZnO and PANi
原文传递
导出
摘要 为获得优异性能的纳/微米结构的有机-无机复合功能材料,进而探讨在纳/微米结构的电子器件或其它领域的潜在应用,在纳米线聚苯胺(PANi)悬浮液的存在下,采用水热方法进行了ZnO的生长,并用所制得的ZnO/PANi复合材料构筑了叉指结构的聚合物基柔性化学传感器原型器件。采用透射电镜(TEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)等进行了表征,对原型器件的部分响应特性进行了对比考察。结果表明,所制得的ZnO/PANi复合材料为纳米线结构,ZnO的存在对原型器件的敏感特性有明显的影响,影响到聚苯胺的质子化-去质子化过程。XPS结果显示,ZnO/PANi复合对ZnO中Zn、O元素的结合能有显著的影响。所有这些初步结果表明,ZnO/PANi间可能存在强的相互作用,很可能发生了从PANi到ZnO界面间的电荷转移。 In order to obtain nano/micro-structured organic-inorganic composite with unique properties for nanoelectronic/microelectronic device applications, a study on growth of ZnO using hydrothermal synthesis approach in the presence of suspension containing polyaniline nanowires was carried out. A series of characterizations were examined by transmission electron microscopy(TEM), the Fourier-Transform Infrared spectra(FTIR), X-ray diffraction(XRD), X-ray photoelectron spectroscopy (XPS), etc. The results indicated that the resulting-product was ZnO/PANi composite nanowire structure. The charge transfer was possibly taken place at the interface between ZnO and polyaniline nanowire. A chemical prototype sensor was constructed based on ZnO/PANi composite nanowire and an interdigital electrodes on flexible polymer substrate. The gas-sensing behaviors of the sensor to ammonia and HCI gas at room temperature were investigated. Results showed that the effects of the presence of ZnO on the sensitivity of polyaniline based chemical sensors were remarkably. This proved further that the strong interaction between ZnO and oolvaniline was existed.
出处 《高分子通报》 CAS CSCD 北大核心 2011年第8期72-78,共7页 Polymer Bulletin
基金 山东省自然科学基金(Y2008F24) 浙江大学硅材料国家重点实验室开放基金(SKL2008-7),浙江大学工业控制技术国家重点实验室开放基金(ICT1005)
关键词 ZnO/PANi复合纳米线 界面特性 电荷转移 化学传感 性能考察 ZnO/PANi Composite Nanowires Interface Charge Transfer Chemical Sensor Property Examination
  • 相关文献

参考文献58

  • 1Chang J,Rhae J,Im S, Lee Y,Kim H,Seok S,Nazeeruddin M K,Gratzel M. Nano Lett,2010,10j2609--2612.
  • 2Brlseno A L,Holcombe T W,Boukai A I,Garnett E C,Shalton S W,Fretchet J J M,and Yang P. Nano Lett,2010,10,334-340.
  • 3Aguilar A D, Forzani E S, Leright M, Tsow F, Cngan A, Igleslas R A, Nagahara L A, Amlani I, Tsui R, and Tim N J. Nano Lett, 2010,10,380- 384.
  • 4Baran D, Balan A,Celebi S, Esteban B M, Neugebauer H,Sariciftci N S, and Toppare L. Chem Mater, 2010,22, 2978-2987.
  • 5Yuriy R,Moliner M, and Davis M E. Chem Mater, 2010,22:2646-2652.
  • 6Tarver J,Yoo J,and Loo Y. Chem Mater,2010,22:2333-2340.
  • 7Kub C,Tolosa J,Zucchero A J,McGrier P L,Subramani C,Khorasani A,Rotello V M,and Bunz U H F. Macromolecules,2010,43: 2124-2128.
  • 8LiuJ,Zhong Y, Lam J W Y, Lu P, Hong Y, Yu Y, Yue Y, Faisal M, Sung H H Y, Williams I D, Wong K, and Tang B Z. Macromolecules, 2010,43 : 4921-4936.
  • 9Zujovic Z D, Laslau C, Bowrnaker G A, Kilmartin P A, Webber A L, Brown S P, and Jadranka T. Macromolecules, 2010, 43: 662-670.
  • 10Liu L, Yu M, Duan X and Wang S. J Mater Chem, 2010,20 : 6942- 6947.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部