期刊文献+

一种高效粒子群优化算法 被引量:27

An efficient particle swarm optimization
原文传递
导出
摘要 针对标准粒子群算法收敛速度慢和易出现早熟收敛等问题,提出一种高效粒子群优化算法.首先利用局部搜索算法的局部快速收敛性,对整个粒子群目前找到的最优位置进行局部搜索;然后,为了跳出局部最优,保持粒子的多样性,给出一个学习算子.该算法能增强算法的全局探索和局部开发能力.通过对10个标准测试函数的仿真实验并与其他算法相比较,结果表明了所提出的算法具有较快的收敛速度和很强的跳出局部最优的能力,优化性能得到显著提高. To the problems of low searching speed and premature convergence frequently appeared in standard particle swarm optimization(PSO) algorithm, an efficient particle swarm optimization(AEPSO) is proposed in this paper. The method makes full use of the local convergent performance of the local random search algorithm to optimize the global best position of the swarm found so far. Then to go out of the local optimum in PSO and maintain the population diversity in the process of evolution, a learning operator is presented. This algorithm can enhance the exploration and exploitation ability of the algorithm. Through testing the performance of the proposed approach on a suite of 10 benchmark functions and comparing with other rneta-heuristics, the result of simulation shows that the proposed approach has better convergence rate, great capability of preventing premature convergence and superior performance.
出处 《控制与决策》 EI CSCD 北大核心 2011年第8期1158-1162,共5页 Control and Decision
基金 国家自然科学基金项目(60974082) 中央高校基本科研业务费专项资金项目(K50510700004)
关键词 粒子群优化 局部搜索 学习算子 差分进化 particle swarm optimization local search learning operator differential evolution
  • 相关文献

参考文献15

  • 1Kennedy J, Eberhartr C. Particle swarm optimization[C]. Proc of IEEE Int Conf on Neural Networks. Perth: IEEE Piscataway, 1995: 1942-1948.
  • 2Jiao B, Lian Z G, Gu X S. A dynamic inertia weight particle swarm optimization algorithm[J]. Chaos Solitons Fractals, 2008, 37(3): 698-705.
  • 3Jiang C W, Etorre B. A hybrid method of chaotic particle swarm optimization and linear interior for reactive power optimization[J]. Mathematics and Computers in Simulation, 2005, 68(1): 57-65.
  • 4Fan S E Zahara E. Hybrid simplex search and particle swarm optimization for unconstrafined optimization problems[J]. European J of Operational Research, 2007, 181(2): 527-548.
  • 5张顶学,廖锐全.一种基于种群速度的自适应粒子群算法[J].控制与决策,2009,24(8):1257-1260. 被引量:18
  • 6Liang J J, Qin A K, Suganthan P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Trans on Evolutionary Computation, 2006, 10(3): 281-295.
  • 7Hamzacebi C, Kutay E Continuous functions minimization by dynamic random search technique[J]. Applied Mathematical Modelling, 2007, 31(10): 2189-198.
  • 8Hamzacebi C. Improving genetic algorithms, performance by local search for continuous function optimization[J]. Applied Mathematics and Computation, 2008, 196(1): 309-317.
  • 9Yao X, Liu Y, Lin G. Evolutionary programming made faster[J]. IEEE Trans on Evolutionary Computation, 1999, 3(2): 82-102.
  • 10Zhao X C. A perturbed particle swarm algorithm for numerical optimization[J]. Applied Soft Computing, 2010, 10(1): 119-124.

二级参考文献10

  • 1刘洪波,王秀坤,谭国真.粒子群优化算法的收敛性分析及其混沌改进算法[J].控制与决策,2006,21(6):636-640. 被引量:62
  • 2Kennedy J,Eberhart R.Particle swarm optimization[C].IEEE Int Conf on Neural Networks.Piscataway:IEEE Serviee Certer,1995:1942-1948.
  • 3Shi Y,Eberhart R.A modified particle swarm optimizer[C].IEEE World Congress on Computational Intelligence.Piscataway.IEEE Press,1998:69-73.
  • 4Shi Y,Eberhart R C.Fuzzy adaptive particle swarm optimization[C].Proc of IEEE Conf on Evolutionary Computation.Piscataway:IEEE Press,2001:101-106.
  • 5Zhang L P,Yu H J,Hu S X.A new approach to improve particle swarm optimization[C].Lecture Notes in Computer Science.Chicago:Springer-Verlag,2003:134-139.
  • 6Jiang C W,Etorre B.A hybrid method of chaotic particle swarm optimization and linear interior for reactive power optimization[J].Mathematics and Computers in Simulation,2005,68(1):57-65.
  • 7Chen G M,Huang X B,Jia J Y,et al.Natural exponential inertia weight strategy in particle swarm optimization[C].Proc of 6th Congress on Intelligent Control and Automation.Dalian:IEEE Press,2006:3672-3675.
  • 8Jiao B,Lian Z G,Gu X S.A dynamic inertia weight particle swarm optimization algorithm[J].Chaos Solitons & Fractals,2008,37(3):698-705.
  • 9Clerc M,Kennedy J.The particle swarm:Explosion,stability and convergence in multi-dimensional complex space[J].IEEE Trans on Evolutionary Computation,2002,6(1):58-73.
  • 10Trelea I C.The particle swarm optimization algorithm:Convergence analysis and parameter selection[J].Information Processing Letters,2003,85(6):317-325.

共引文献17

同被引文献313

引证文献27

二级引证文献295

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部