摘要
针对粒子群优化(PSO)算法在复杂问题求解中出现的早熟收敛问题,从认知心理学角度进行分析,将创造性思维(CT)引入PSO算法,提出一种基于创造性思维的PSO算法(CTPSO).基于CT过程的"四阶段"模型,构建了算法框架,改进了速度更新公式,在粒子个体的惯性、个体认知和社会能力的基础上增强CT能力,以提升其整体寻优性能.典型测试函数的运行结果表明,该算法具有较强的全局搜索能力,收敛速度快,算法稳定性好,且未增加新的参数和计算复杂度.
Particle swarm optimization(PSO) suffers from the premature convergence problem in complex optimization problems. To solve this problem, this paper analyzes PSO algorithm from cognitive psychology and proposes a creative thinking(CT) based PSO algorithm(CTPSO). Based on the four stages model in CT process, a framework of CTPSO is designed, and the evolution model is adapted, which includes a CT model besides the memory model, cognitive model and social model in standard PSO to improve the optimization capability of particles. CTPSO is applied to some well- known benchmarks, and experimental results show that CTPSO possesses more powerful global search capabilities, better convergence rate and robustness, meanwhile it does not introduce new parameters and comoutational comolexity.
出处
《控制与决策》
EI
CSCD
北大核心
2011年第8期1181-1186,共6页
Control and Decision
基金
国家自然科学基金项目(60974073
60974074)
装备预研基金项目(9140C640505)
关键词
群智能
粒子群优化
创造性思维
四阶段模型
swarm intelligence
particle swarm optimization
creative thinking
four stages model