期刊文献+

基于Type-2 FNN数据融合的双进双出磨煤机料位检测 被引量:4

BBD ball mill material measure based on type-2 FNN data fusion
原文传递
导出
摘要 针对双进双出磨煤机料位准确检测的难题,提出一种基于二型模糊神经网络(Type-2 FNN)数据融合的双进双出磨煤机料位检测方法.首先将多传感器采集的变量参数数据按照二型模糊规则进行模糊化处理;然后构造神经网络进行数据融合,所得融合结果即为检测的料位值.该方法具有较好的自组织、自学习、并行分别处理能力,保证了检测结果具有较高的准确性.仿真实验表明,该方法可有效弥补单一测量方法的不足,实现料位更为准确的测量. For the material accurate measure problems of double input and double output(BBD) ball mill, a method of BBD ball mill's material measure based on type-2 fuzzy neural network(Type-2 FNN) data fusion is proposed. Firstly, the variables parameters are dealed with fuzzily according to the type-2 fuzzy rules, which are acquisitied by multi-sensor. Then the neural network is structured for data fusion, and the result is the material data. The method not only has good capabilities of self-organization, self-learning and respectively processing, but also ensures that detecting result has higher accuracy. Simulation results show that, the application of this fusion system can effectively remedy the lacks of single measurement method to achieve more accurate measurement.
出处 《控制与决策》 EI CSCD 北大核心 2011年第8期1259-1263,共5页 Control and Decision
基金 国家自然科学基金项目(60905054) 辽宁省教育厅科研基金项目(2006T102) 沈阳工业大学博士启动基金项目(521102302)
关键词 多信息数据融合 料位准确检测 二型模糊系统 神经网络 双进双出磨煤机 multi-information data fusion material accurate measure type-2 fuzzy sets neural network BBD ball mill
  • 相关文献

参考文献15

  • 1Cui B X, Su G H. Measurement and disposal of noise on double-in and double-out stell ball mill[C]. ISTM/2005 6th Int Symposium on Test and Measurment. Beijing: Word Publising Corporation, 2005: 2569-2572.
  • 2侯典来,陈言军.双进双出钥球磨煤机料位检测及其控制[C].第8届工业仪表与自动化学术会议论文集.北京:北京航空航天大学出版社,2007:293-298.
  • 3崔宝侠,李明,徐冰.小波包在双进双出磨煤机料位检测中的应用[J].沈阳工业大学学报,2008,30(3):341-345. 被引量:6
  • 4张怡强.功率(电流)法对磨煤机煤位的控制与应用[J].华东电力,2001,29(7):48-49. 被引量:20
  • 5Zadeh L A. The conceptofa linguistic variable and its application to approximate reasoning[J]. Information Sciences, 1975, 8(3): 199-249.
  • 6陈薇,孙增圻.二型模糊系统研究与应用[J].模糊系统与数学,2005,19(1):126-135. 被引量:26
  • 7Mendel Jerry, Mendel Robert I, Bob John. Type-2 fuzzy sets made simple[J]. IEEE Trans on Fuzzy System, 2002, 10(2): 117-127.
  • 8Mendel Jerry, Mendel Robert I, John Feilong Liu. Interval type-2 fuzzy logic systems made simple[J]. IEEE Trans on Fuzzy System, 2006, 14(6): 808-821.
  • 9Mendel J M. Uncertain rule-based fuzzy logic systems: Introductionand new directions[M]. Prentice-Hall: Englewood Cliffs, 2001.
  • 10Kamik N N, Mendel J M. Centroid of a type-2 fuzzy set[J]. Information Science, 2001, 132(4): 195-220.

二级参考文献42

共引文献51

同被引文献38

  • 1万银,刘丁,任俊超,刘聪聪.基于栈式自编码网络的直拉硅单晶生长过程V/G软测量建模[J].仪器仪表学报,2020(10):277-286. 被引量:2
  • 2王东风,韩璞.基于RBF神经网络的球磨机负荷软测量[J].仪器仪表学报,2002,23(z1):311-312. 被引量:17
  • 3苏志刚,于向军,吕震中,赵刚.灰色软测量在球磨机料位检测中的应用[J].热能动力工程,2006,21(6):578-581. 被引量:7
  • 4Ma P, Du H L, Lv F. Coal mass estimation of the coal mill based on two-step multi-sensor fusion . 2005 International Conference on Machine Learning and Cybernetics. Guangzhou, 2005: 1307-1311.
  • 5Wang G Y, Xu C L, Zhang Q H, et al. A multi-step backward cloud generator algorithm . In Rough Sets and Current Trends in Computing, 2012, 7(4): 313-322.
  • 6TROMANS D.Mineral comminution: energy efficiency considerations . Minerals Engineering, 2008, 21 (8) : 613-620.
  • 7ZHANG Y, WANG Y.Soft-sensor model of mill load based on rough set and RBF neural network. Intelligent Control and Automation (WCICA) , 2010 8th World Congress on. IEEE, 2010: 4333-4336.
  • 8ZADEH L A.The concept of a linguistic variable and its application to approximate reasoning-H. Information sciences, 1975, 8(4) : 301- 357.
  • 9KARNIK N N,MENDEL J M, LIANG Q.Type-2 fuzzy logic systems. IEEE Transactions on Fuzzy Systems, 1999,7 (6) : 643- 658.
  • 10MENDEL J M.Type-2 fuzzy sets and systems: an overview. Computa- tional Intelligence Magazine, IEEE, 2007, 2( 1): 20-29.

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部