期刊文献+

碳纳米管/半导体纳米复合材料的光电化学特性及其应用 被引量:3

Photoelectrochemical Properties and Applications of Carbon Nanotubes/Semiconductor Nanocomposites
原文传递
导出
摘要 光电化学过程是在光作用下的电化学过程,它是光伏电池,光电催化等实际应用的基础,是当前十分活跃的研究领域。碳纳米管具有很高的热稳定性,良好的导电能力,大的比表面积,被认为是半导体纳米粒子的有效载体,其独特的一维结构可以为电子提供有效的传输路径。碳纳米管与半导体材料复合,能实现碳纳米管和半导体在结构和性能上的协同,近年来在光电化学领域受到了广泛的关注。本文基于国内外最新研究进展,结合本课题组的研究成果,综述了碳纳米管/半导体复合材料的光电协同作用机理及其在太阳能电池、光电催化降解污染物、光电协同分解水制氢领域中的应用。 Photoelectrochemieal process is an electrochemical process active research field currently. It is also the base of practical under light irradiation, which is a very applications for photovoltaic cells, photoelectrocatalysis and so on. The high performance photoelectrochemical devices are strongly dependent on advanced semiconductors or their nanocomposites with high quantum efficiency. On the other hand, because of their good chemical and thermal stability, high electrical conductivity and large surface area, carbon nanotubes (CNTs) have been used as effective supports for semiconductors, and their unique one-dimensional geometric structure provides effective transmission path for electrons. Moreover, carbon nanotube/semiconductor nanocomposites which have attracted great attentions usually exhibit synergistic effect for high photoeletrochemical response. The recombination of photo-induced electrons and holes will be restrained further with the applied bias voltage, thus facilitates the transfer of electrons to the external circuit. In this review paper, we summarize the progress of the recently published literatures and our findings on photoelectrochemical properties and applications based on carbon nanotubes/semiconductor nanocomposites. The enhancement mechanism for the high photoelectrochemical performance of the nanocomposites is discussed. The applications including solar ceils, photoelectrochemical degradation of pollutants and splitting of water for hydrogen generation are introduced in details. The prospect and challenge to the material science and future applications are also discussed.
出处 《化学进展》 SCIE CAS CSCD 北大核心 2011年第8期1583-1590,共8页 Progress in Chemistry
基金 国家自然科学基金项目(No.20773041,21043005) 教育部高等学校博士点基金项目(No.20070561008)资助
关键词 碳纳米管 半导体 光电化学 协同作用 carbon nanotubes semiconductor photoelectrochemistry synergistic effect
  • 相关文献

参考文献56

  • 1O'Regan B, Gratzel M. Nature, 1991, 353:737-740.
  • 2Iijima S. Nature, 1991, 354:56-58.
  • 3Baughman R H, Zakhidov A A, de Heer W A, Science,2002, 297 : 787-792.
  • 4Constantopoulos K T, Shearer C J, Ellis A V, Voelcker N H, Shapter J G. Adv. Mater., 2010, 22:557-571.
  • 5HoY M, Zheng W T, Li Y A, Liu J W, Qi J L. J. Phys. Chem. C, 2008, 112:17702-17708.
  • 6Zhang W D, Phang I Y, Liu T X. Adv. Mater., 2006, 18:73-77.
  • 7Zhang W D, Phang I Y, Shen L, Chow S Y, Liu T X. Macromol. Rapid Commun. , 2004, 25:1860-1864.
  • 8KimY T, Tadai K, Mitani T. J. Mater. Chem. , 2005, 15: 4914-4921.
  • 9Fan Z, Chen J H, Cui K Z, Sun F, Xu Y, Kuang Y F. Electrochim. Acta, 2007, 52:2959-2965.
  • 10Zhang W D, Chen J. Pure Apph Chem., 2009, 81: 2317-2325.

二级参考文献113

  • 1李伟,成荣明,徐学诚,陈奕卫,孙明礼.羟基自由基对多壁碳纳米管表面和结构的影响[J].无机化学学报,2005,21(2):186-190. 被引量:12
  • 2陈士夫,赵梦月,陶跃式,梁新.玻璃纤维附载TiO_2光催化降解有机磷农药[J].环境科学,1996,17(4):33-35. 被引量:123
  • 3Hoffmann M R, Martin S T, Choi W, Bahnemann D W. Chem. Rev. , 1995, 95:69-96.
  • 4Chen X, Mao S S. Chem. Rev. , 2007, 107:2891-2959.
  • 5Hong X T, Wang Z P, Cai W M, Lu F, Zhang J, Yang Y Z, Ma N, Liu Y J. Chem. Mater. , 2005, 17:1548-1552.
  • 6Zhang W D, Xu B, Jiang L C. J. Mater. Chem. , 2010, 20: 6383-6391.
  • 7Woan K, Pyrgiotakis G, Sigrnund W. Adv. Mater. , 2009, 21 : 2233-2239.
  • 8Oh W, Chen M. Bull. Korean Chem. Soe. , 2008, 29: 159- 164.
  • 9Dai K, Peng T, Ke D, Wei B. Nanotechnology, 2009, 20: 125601 -125603.
  • 10Akhavan O, Abdolahad M, Abdi Y, Mohajerzadeh S. Carbon, 2009, 47:3280-3287.

共引文献31

同被引文献29

  • 1Ni Yonghong, Cao Xiaofeng, Hu Guangzhi,et al.. Preparationconversion and comparison of the photocatalytic and electrochem-ical properties of ZnS(en)05, ZnS, and ZnO [J]. Crystal Growth& Design, 2007,7 (2): 280-285.
  • 2Iijima S. Helical microtubules of graphitic carbon [J]. Nature,1991,354 (6348): 56-58.
  • 3Ajayan P M, Iijima S. Capillarity-induced filling of carbon nano-tubes [J]. Nature, 1993,361 (6410): 333-334.
  • 4Ajayan P M, Ebbesen T W, Ichihashi T,et al.. Opening carbonnanotubes with oxygen and implications for filling [J]. Nature,1993,362 (6420): 522-525.
  • 5Seraphin S, Zhou D, Jiao J, et al.. Yttrium carbide in nanotubes[J]. Nature, 1993,362 (6420): 503.
  • 6Dominik Eder. Carbon nanotube inorganic hybrids [J]. Chem Rev,2010,110 (3): 1348-1385.
  • 7Jeremy Sloan, Jens Hammer, Marek Zwiefka-Sibley, et al.. Theopening and filling of single walled carbon nanotubes (SWTs) [J].Chem Commun, 1998 (3): 347-348.
  • 8BaneijeeSarbajit,Wong Stanislaus S.Synthesis and characterizationof carbon nanotube-nanocrystal heterostructures [J]. Nano Lett,2002,2 (3): 195-200.
  • 9Lee Kunchan, Zhang Lei, Zhang Jiujun. Ternary non-noble metalchalcogenide (W-Co-Se) as electrocatalyst for oxygen reductionreaction [J]. Electrochem Commun, 2007,9 (7): 1704-1708.
  • 10Ravindran Sathyajith, Chaudhary Sumit, Colburn Brooke, et al.Covalent coupling of quantum dots to multiwalled carbon nanotu-bes for electronic device applications [J]. Nano Lett, 2003,3 (4):447-453.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部