期刊文献+

分数导数粘弹性土层模型中桩基竖向振动特性研究 被引量:11

VERTICAL VIBRATION OF SINGLE PILE IN SOIL DESCRIBED BY FRACTIONAL DERIVATIVE VISCOELASTIC MODEL
原文传递
导出
摘要 粘弹土体的应力-应变关系利用分数导数粘弹性模型进行描述,建立了分数导数粘弹性土层的竖向振动控制方程。在考虑三维波动的条件下,利用势函数和分离变量的方法求解了分数导数粘弹性土层的竖向振动。考虑桩土边界条件和接触条件对分数导数粘弹性土中桩基的竖向振动进行了研究,分析了主要桩土力学参数对桩顶复刚度和导纳的影响规律。研究表明:分数导数的阶数、土体模型参数和桩长径比对桩顶复刚度和导纳有较大影响;分数导数粘弹性模型可以在较大的范围内较精确地描述土体的力学行为;当长径比增大到一定的程度时再增加长径比对桩基竖向振动特性的影响不大。 The paper established the vertical dynamic governing equations of viscoelastic soil, where the stress-strain relationship of soil is described by fractional derivative viscoelastic model. Considering the three-dimensional wave effect of the soil-pile, the vertical vibration of soil described by fractional derivative viscoleastic model is solved by potential functions and the method of separation variables. The vertical coupled vibration of a pile in viscoleastic soil is investigated with boundary and contact conditions. The influences of mechanical parameters of pile and soil on the vertical vibration of a pile in viscoelastic soil are also analyzed. The results indicate that the order of fractional derivative, the model parameters of soil and the length-radius ratio have great impact on the complex stiffness and admittance at pile head; and the fractional derivative viscoelastic model can describe the mechanical behavior more accurately in larger range; and moreover, the influence of length-radius ratio becomes very smaller when the length-radius ratio increases to a certain value..
出处 《工程力学》 EI CSCD 北大核心 2011年第8期177-182,共6页 Engineering Mechanics
基金 国家自然科学基金项目(10872124) 河南省科技发展计划项目(112300410105) 河南省教育厅自然科学研究计划项目(2011A1301001) 信阳师范学院青年骨干教师资助计划项目(2011007)
关键词 分数导数 粘弹性 应力-应变关系 振动特性 势函数 fractional derivative viscoelsatic stress-strain relationship vibration characteristics potential functions
  • 相关文献

参考文献11

二级参考文献34

  • 1赵振东,杉本三千雄,铃木善雄.桩基低应变完整性检测的分析研究[J].地震工程与工程振动,1995,15(4):104-112. 被引量:27
  • 2N Shimizu, W Zhang. Fractional calculus approach to kdynamic problem of viscoelastic materials[J]. JSME,International Journal Series, 1999, 42 (1): 827-830.
  • 3N Markris and G Gazetas. Dynamic pile-soft-pile interaction.PartII : lateral and seismic response [J]. Earthquake engi-neering and Structural dynamics, 1992, 21 (2) : 145 - 162.
  • 4N. Makris. Soil-pile interaction during the passage of rayleigh waves: an analytical solution [J]. Earthquake engineering and Structural dynamics, 1994, 23 (2): 647-664.
  • 5Novak, M., Dynamic Stiffness and Damping of Piles [J].Canadian Geotechnieal Journal, 1974, Vol. II : 574-598.
  • 6Novak, M., Shamouby, B. El., Stiffness Constant of Single Piles [J]. Journal of Geolechnical Engineering, 1983, 109(7) : 961-974.
  • 7GemantA.Onfractional diffedrences [J].Phil mag,1938,25,(1),:92-96.
  • 8BagleyRL, TorvikPJ.On the fractioal calculus model ofviscoelasticity benavior[J].J of Rneology, 1986,30(1): 133-155.
  • 9Koeller RC, Applications ofthe fractional calculus to the theory of viscoelastity[J].JApplMech,1984,51(3) :294-298.
  • 10Rossiknin Y A.Shitikova M V.Applications of fractional calculus to dynamic problems of liltear and nonlinear hereditary mechanics of solid[ J].Appl Mech Rev, 1997, 50(1): 15-67.

共引文献90

同被引文献78

引证文献11

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部