期刊文献+

含双侧刚性约束碰撞振动系统的混沌控制 被引量:7

Chaos Control of a Two-degree-of-freedom Vibrating System with Two Rigid Constraints
下载PDF
导出
摘要 建立了一类两自由度含双侧刚性约束振动系统的非对称型周期运动方程,构建了其Poincaré映射方程。数值计算结果揭示了该系统的周期运动及其通向混沌的转迁途径,给出了系统从周期运动变成混沌过程中激振频率ω的变化范围,并得到了系统的混沌运动。利用外加恒定载荷和位相法两种非反馈方法,以适当的控制强度将系统的混沌运动控制到稳定的周期轨道。 With the help of uncoupled approach of modal matrix, symmetrical periodic motion and the Poincare mapping of a two-degree-of-freedom vibrating system with two rigid constraints are derived analytically. Periodic motions of the system and their routes to chaos are also illustrated by numerical simulation. The ranges of the system excited frequency from periodic motions to chaotic motions are obtained. The chaos controlling methods by the addition of constant motor torque and the addition of phase are dissertated and analyzed numerically by the numerical solution. The chaos of the system is controlled by the two methods. The allowable range of controlling variables and the steady orbit of the system under controlling are obtained.
出处 《机械科学与技术》 CSCD 北大核心 2011年第8期1262-1266,共5页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金项目(50475109 10572055) 甘肃省自然科学基金项目(0803RJZA012) 兰州交通大学"青蓝"人才工程(QL-05-12A)资助
关键词 冲击振动 映射 周期运动 混沌 混沌控制 vibro-impaet mapping periodic motion chaos chaos controlling
  • 相关文献

参考文献19

  • 1Shaw S W, Holmes P J. A periodically forced piecewise linear os- cillator[J]. Journal of Sound and Vibration, 1983,90(1 ): 129- 155.
  • 2杨振中.小型振动冲击式打桩机动力学性能研究[J].农业机械学报,1999,30(6):36-40. 被引量:10
  • 3李群宏,陆启韶.碰振系统中的共存周期轨道[J].应用数学和力学,2003,24(3):234-244. 被引量:17
  • 4Whiston G S. Singularities in vibro-impact dynamics[J].Journal of Sound and Vibration, 1992,152(3) :427-460.
  • 5Luo Albert C J. Grazing and chaos in a periodically forced, piece- wise linear system [ J]. Journal of Vibration and Acoustics, 2006,128:29 - 34.
  • 6Luo G W, Xie J H. Hopf bifurcations of a two-degree-of-freedom vibro-impact system [J]. Journal of Sound and Vibration, 1998,213(3) :391 -408.
  • 7Luo Albert C J. Period-doubling induced chaotic motion in the LR model of a horizontal impact oscillator [ J ]. Chaos, Solitons & Fractals, 2004,19:823 - 839.
  • 8Hubler A, Luscher E. Resonant stimulation of complex systems[J]. Heir Phys Acta, 1989,62:544.
  • 9Ott E, Grebogi C, Yorke J Z. Controlling chaos[J]. Physics Re- view Letters, 1990,64:1196.
  • 10Pecora L M, Carroll T L. Synehroni-zafion in chaotic systems[J]. Physics Review Letters, 1990,64:821.

二级参考文献29

共引文献37

同被引文献44

引证文献7

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部