期刊文献+

格值可逆自动机的代数性质

Algebraic Properties of Lattice-valued Reversible Automata
下载PDF
导出
摘要 首先在格值逻辑框架下引入格值自动机的概念,并提出可逆映射的概念,从而诱导出格值可逆自动机的概念;其次研究了格值可逆自动机的代数性质,同时给出保证该代数性质成立的充分必要条件. Firstly, the notion lattice-valued automaton is introduced in the frame of lattice-valued logic, and the concept of reversible mapping is given, which induced the notion of lattice-valued reversible automaton at the same time; Secondly, the author establish the algebraic properties of lattice- valued reversible automata, and present the necessary and sufficient condition that guarantee these algebraic properties hold in the mean time.
作者 宋小震
机构地区 榆林学院
出处 《价值工程》 2011年第23期156-157,共2页 Value Engineering
基金 榆林学院青年基金资助项目(10YK31)
关键词 格值逻辑 格值自动机 格值可逆自动机 代数性质 lattice-valued logic lattice-valued automata lattice-valued reversible automaton algebraic property
  • 相关文献

参考文献19

  • 1Asveld P R J.Algebraic aspects of families of fuzzy languages[J].Theoretical Computer Science,2003,293:417-445.
  • 2Birkhoff G.Lattice Theory[M].Third Edition,Amer.Math.Soc,Providence,Rhode Island,USA,1973.
  • 3Droste M,Kuich W,Vogler H.Handbook of Weighted Automata.EATCS Monographs in Theoretical Computer Science.Springer-Verlag,2009.
  • 4Eilenberg S.Automata,Languages and Machines[M] ,Vol.A,B.Academic Press,New York,1974,1976.
  • 5Hájek P.Metamathematics of Fuzzy Logic[M] ,Dordrecht:Kluwer Academic Publisher,1998.
  • 6Hopcroft J E,Ullman J D.Introduction to Automata Theory,Languages and Computation[M].Addson-Wesley,New York,1979.
  • 7Khoussainov B.Nerode A.Automata Theory and its Applications[M].Boston:Birk user,2001.
  • 8Lee E T,Zadeh L A.Note on fuzzy languages[J].Information Sciences 1 (1969)421-434.
  • 9Li Y M,Pedrycz W.Fuzzy finite automata and fuzzy regular expressions with memebership values in lattice-ordered monoids[J].Fuzzy Sets and Systems,2005,156:68-92.
  • 10Li Y M.Finite automata theory with membership values in lattices[J].Information Sciences181 (2011) 1003-1017.

二级参考文献19

  • 1应明生.不分明拓扑中的一种覆盖式紧性[J].数学学报(中文版),1994,37(6):852-856. 被引量:5
  • 2沈恩绍.模型论逻辑与理论计算机科学[J].数学进展,1996,25(3):193-202. 被引量:10
  • 3王世强 卢景波.格值模型的超积基本定理[J].科学通报,1981,26:71-74.
  • 4王世强.格值模型论中常量构作法的两个应用[J].科学通报,1981,26(3):129-130.
  • 5沈复兴.格值模型的初等扩充和初等链[J].科学通报,1982,27(5):264-266.
  • 6Yin M S. Automata Theory Based on Quantum Logic (Ⅱ). Int J Theor Phys, 2000, 39(11): 2545-2557.
  • 7Rosser J B , Turquette A R. Many-Valued Logics. Amsterdam: North-Holland, 1952.
  • 8Ying M S. Fuzzifying topology based on complete residuated lattice-valued logic (Ⅰ). Fuzzy Sets and Systems 1993, 56:337-373.
  • 9Hopcroft J E, Ullman J D. Introduction to Automata Theory, Languages, and Computation. New York:Addision-wesley, 1979.
  • 10Alon N, Dewdney A, Ott T. Efficient simulation of finite automata by neural nets. J Assoc Comput Mach,1991, 38 (2): 498-514.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部