期刊文献+

采用CP-GMM模型的实时人群异常检测 被引量:1

Real-time Anomaly Detection in Crowd Scenes Using CP-GMM Model
原文传递
导出
摘要 针对人群异常检测中出现的检测速度慢、检测精度低的问题,提出一种新的人群参数混合高斯模型(CP-GMM)算法来对人群参数进行建模分析,并通过筛选出小概率特征来检测人群监控视频中发生的异常现象。算法立足于人群中显著点,通过统计分析人群中显著点的特征来提取人群特征,并使用参数分析模型对感兴趣区域内速度大小、方向等参数进行异常检测。检测过程中不需要对人群中个体进行跟踪,也无需对检测模型进行大规模训练。实验表明,算法快速有效,在较低误报率下取得了较好的检测效果。 To improve the rate and performance of crowd anomaly detection algorithm,a novel Crowd Feature Parameter analyzing model,Crowd Parameter Gaussian Mixture Model(CP-GMM) is introduced.Based on this model,anomalies can be detected by checking out the crowd feature parameter with lower recurrence probability.The anomaly detection algorithm first gets good feature points in the crowd,then it counts and analyzes the features of the good feature points to extract the features of the crowd,and uses parameter analysis model to carry out anomaly detection on the parameters such as the magnitude and direction of the velocity.This anomaly detection algorithm needs not tracking individuals,and needs not large scale training of the detection model.Experiments demonstrate this anomaly detection algorithm is efficient,and can get better performance at lower false positive detecting rate.
出处 《电子技术(上海)》 2011年第7期7-9,共3页 Electronic Technology
基金 安徽省科技攻关项目(No.09010306042)
关键词 视频监控 人群分析 异常检测 video surveillance crowd analysis anomaly detection
  • 相关文献

参考文献7

  • 1Ihaddadene N, Djeraba C. Real-time crowd motion analysis[C]//Proceedings of 19th International Conference on Pattern Recognition,2008:1-4.
  • 2Sharif H, et al. Crowd behavior monitoring on the escalatorexits[C]//Proceedings of 1 l th International Conferenceon Computer and Information Technology, 2008:194-200.
  • 3Mehran R, Oyama A, Shah M. Abnormal crowd behaviordetection using social force model[C]//Proceedings ofIEEE Conference on Computer Vision and PatternRecognition, 2009: 935-942.
  • 4Mahadevan V, et al. Anomaly detection in crowdedscenes[C]//IEEE Conference on Computer Vision andPattern Recognition, 2010:1975-1981.
  • 5Stauffer C, Grimson W E L. Adaptive background mixturemodels for real-time tracking[C]//IEEE ComputerSociety Conference on Computer Vision and PatternRecognition, 1999:246-252.
  • 6Unusual crowd activity dataset of University of Minnesota[EB/OL]. http://mha.cs.umn.edu/movies/crowd-activity-all.avi.
  • 7UCSD anomaly detection dataset[EB/OL].http://www.svcl.ucsd.edu/projects/anomaly/dataset.htm.

同被引文献11

  • 1邱卫国,昂海松.NEW CORNER DETECTION ALGORITHM BASED ON MULTI-FEATURE SYNTHESIS[J].Transactions of Nanjing University of Aeronautics and Astronautics,2004,21(3):174-178. 被引量:3
  • 2Haidar Sharif M,Ihaddadene N,Djeraba C.Crowd behavior monitoring on the escalator exits[C]//11th International Conference on Computer and Information Technology,ICCIT 2008,2008:194-200.
  • 3Mehran R,Oyama A,Shah M.Abnormal crowd behavior detection using social force model[C]//IEEE Conference on Computer Vision and Pattern Recognition,2009:935-942.
  • 4Wang Zhen,Ouyang Ning,Han Chuanjiu.Unusual event detection without tracking[C]//2009 Ci SE International Conference on Computational Intelligence and Software Engineering,2009:1-3.
  • 5Bruhn A,Weickert J,Schn?rr C.Combining local and global optic flow methods[J].International Journal of Computer Vision,2005,61(3):211-231.
  • 6Barron J L,Fleet D,Beauchemin S.Performance of optical flow techniques[J].International Journal of Computer Vision,1994,12(1):43-77.
  • 7Jean-Yves B.Pyramidal implementation of the lucas kanade feature tracker description of the algorithm[R].Intel Corporation,Microprocessor Research Labs,2000.
  • 8杨琳,苗振江.一种人群异常行为检测系统的设计与实现[J].铁路计算机应用,2010,19(7):37-41. 被引量:8
  • 9宁瑞芳,欧阳宁,莫建文.基于光流法的聚众事件检测[J].计算机工程与应用,2012,48(3):198-201. 被引量:10
  • 10朱海龙,刘鹏,刘家锋,唐降龙.人群异常状态检测的图分析方法[J].自动化学报,2012,38(5):742-750. 被引量:17

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部