期刊文献+

一类非线性偏微分方程的对称研究 被引量:1

Symmetries of a class of partial differential equations
下载PDF
导出
摘要 利用待定系数法研究了一类任意阶偏微分方程的对称,并将此方法应用到Rosenau-Hyman方程,得到了该方程的对称,从而证明此方法对于一维偏微分方程的可行性。 The symmetries of a class of nonlinear classical partial differential equations with arbitrary orders are studied by using indeterminate coefficient method. Finally the conclusion was used to discuss Rosenau- Hymanequatlon.
作者 李丹
出处 《齐齐哈尔大学学报(自然科学版)》 2011年第5期74-76,共3页 Journal of Qiqihar University(Natural Science Edition)
基金 淮阴工学院青年教师基金项目(HGC0922)
关键词 待定系数法 偏微分方程 Rosenau—Hyman方程 对称 indeterminate coefficient method partial differential equation Rosenau-Hyman equation symmetries
  • 相关文献

参考文献4

二级参考文献22

  • 1殷久利,田立新,桂贵龙.广义Camassa-Holm方程的对称性约化和精确解[J].江苏大学学报(自然科学版),2005,26(4):312-315. 被引量:6
  • 2楼森岳,Z Naturforsch,1998年,53卷,251页
  • 3Peter J.Olver,Applications of Lie Groups to Differential Equations,Springer,New York (1986).
  • 4George W.Bluman and Sukeyuki Kumei,Symmetries and Differential Equations,Springer,New York (1989).
  • 5L.V.Ovsiannikov,Group Analysis of Differentital Equations,Academic Press,New York (1982).
  • 6S.Y.Lou,J.Math.Phys.41 (2000) 6509.
  • 7A.S.Fokas,Symmetries and Integrability,Stud.Appl.Math.77 (1987) 253.
  • 8B.Fuchssteiner,Prog.Theor.Phys.70 (1983) 1508.
  • 9A.V.Mikhailov,A.B.Shabat,and V.V.Sokolov,The Symmetry Approach to Classification of Integrable Equations,in:What is integrablity? Springer,Berlin (1990)115.
  • 10S.Y.Lou,B.Tong,H.C.Hu,and X.Y.Tang,J.Phys.A:Math.Gen.39 (2006) 513.

共引文献141

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部