期刊文献+

快速L1范数最小化算法的性能分析和比较 被引量:3

The Performance Analysis and Comparison for Fast L1-Minimization Algorithm
下载PDF
导出
摘要 随着新兴压缩传感(Compressive Sensing,cs)理论的出现,使用L1范数最小化(L1-min)算法进行信号处理和优化成为近几年的热门课题.由于传统的求解方法对于大规模数据的处理效率很低,例如内点法,越来越多的快速L1-min算法被提出,这些算法在速度和处理效果上都各有优势.该文首先介绍了L1-min算法以及影响算法效率的主要因素,然后通过实验数据对五种快速L1-min算法在处理大规模数据时的性能进行分析和客观评价。 With the emergence of new compressive sensing theory, L1-norm minimization algorithm used in processing and optimizing signals has become a hot topic in recent years, because the conventional algorithms, for example, interior-point method, are ineflficient in solving large-scale data. More and more fast L1-rain algorithms have been proposed, all of which have their own advantages in speed and effect. This paper first introduces the L1 -min algorithms and the main factors affecting the efficiency of the algorithms, and then introduces the present five major fast L1-min algorithms. Finally, based on the experimental data, it analyzes and gives an objective evaluation to the performance of these fast algorithms when dealing with large-scale data.
作者 刘杰 李昆仑
出处 《电脑知识与技术》 2011年第7期4641-4643,共3页 Computer Knowledge and Technology
关键词 L1范数 同伦算法 迭代收缩阈值 近端梯度 增广拉格朗日乘子 梯度投影 L1 norm homotopy iterative shrinkage-thresholding proximal gradient augmented lagrange multiplier gradient projection
  • 相关文献

参考文献12

  • 1石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:711
  • 2Donoho D L. Compressed sensing[J].IEEE Trans. on Information Theory,2006,52(4):1289-1306.
  • 3叶志申,张绍钧,黄仁泰.压缩感知理论及其重构算法[J].东莞理工学院学报,2010,17(3):32-35. 被引量:4
  • 4Bruckstein A,Donoho D,Elad M. From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Review, 2007.
  • 5Candes E, Romberg J, Tao T. Stable signal recovery from incomplete and inaccurate measurements. Comm. Pure and Appl,2006,59(8): 1207-1223.
  • 6VIalioutov D, Cetin M, Willsky A. Homotopy continuation for sparse signal representation[J].In ICASSP,2005.
  • 7Daubechies I, Defrise M, Mol C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[J].Communi- cations on Pure and Applied Math,2004(57):1413-1457.
  • 8Nesterov Y. Gradient methods for minimizing composite objective function[J]. ECORE Discussion Paper,2007.
  • 9Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J].SIAM J.on Ira. Sei,2009,2(1):183- 202.
  • 10Bertsekas D. Nonlinear Programming. Athena Scientific,2003.

二级参考文献91

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献711

同被引文献17

  • 1Wright J, Ma Yi, Mairal J, Sapiro G, Huang T, Yan Shuicheng. Sparse representation for computer vision and pattern recognition [J]. Proceedings of the IEEE, 2010, 98(6): 1031-1044.
  • 2Wright J, Yang A Y, Ganesh A, Sastry S S, Ma Y. Robust face recognition via sparse representation [J]. IEEE PAMI, 2009, 31(2): 210-227.
  • 3Yang Meng, Zhang Lei. Gabor feature based sparse representation for face recognition with Gabor occlusion dictionary [J]. Proc. European Conf. Computer Vision, 2010, 6(5-11): 448-461.
  • 4Liu Chengjun, Wechsler H. Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition [J]. IEEE IP, 2002, 11(4): 467-476.
  • 5Martinez A, Benavente R. The AR face database [R]. CVC Tech. Report, 24. 1998.
  • 6Kim S J, Koh K, Lustig M, Boyd S, Gorinevsky D. A interior-point method for large-scale ll-regularized least squares [J]. IEEE Journal on Selected Topics in Signal Processing, 2007, 1(4): 606-617.
  • 7石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:711
  • 8张娟,詹永照,毛启容,邹翔.基于Gabor小波和稀疏表示的人脸表情识别[J].计算机工程,2012,38(6):207-209. 被引量:17
  • 9刘三明.求解L_0-范数最小化问题的一种新方法[J].上海电机学院学报,2012,15(5):345-350. 被引量:1
  • 10王东霞,刘秋菊,刘书伦.一种l_(2,1)范数最小化问题的算法研究[J].福州大学学报(自然科学版),2013,41(1):12-14. 被引量:3

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部