摘要
随着新兴压缩传感(Compressive Sensing,cs)理论的出现,使用L1范数最小化(L1-min)算法进行信号处理和优化成为近几年的热门课题.由于传统的求解方法对于大规模数据的处理效率很低,例如内点法,越来越多的快速L1-min算法被提出,这些算法在速度和处理效果上都各有优势.该文首先介绍了L1-min算法以及影响算法效率的主要因素,然后通过实验数据对五种快速L1-min算法在处理大规模数据时的性能进行分析和客观评价。
With the emergence of new compressive sensing theory, L1-norm minimization algorithm used in processing and optimizing signals has become a hot topic in recent years, because the conventional algorithms, for example, interior-point method, are ineflficient in solving large-scale data. More and more fast L1-rain algorithms have been proposed, all of which have their own advantages in speed and effect. This paper first introduces the L1 -min algorithms and the main factors affecting the efficiency of the algorithms, and then introduces the present five major fast L1-min algorithms. Finally, based on the experimental data, it analyzes and gives an objective evaluation to the performance of these fast algorithms when dealing with large-scale data.
出处
《电脑知识与技术》
2011年第7期4641-4643,共3页
Computer Knowledge and Technology
关键词
L1范数
同伦算法
迭代收缩阈值
近端梯度
增广拉格朗日乘子
梯度投影
L1 norm
homotopy
iterative shrinkage-thresholding
proximal gradient
augmented lagrange multiplier
gradient projection